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Abstract— The rapid growth of the Internet of Things (IoT)
has led to the widespread adoption of the IoT networks in
numerous digital applications. To counter physical threats in
these systems, automatic modulation classification (AMC) has
emerged as an effective approach for identifying the modulation
format of signals in noisy environments. However, identifying
those threats can be particularly challenging due to the scarcity
of labeled data, which is a common issue in various IoT
applications, such as anomaly detection for unmanned aerial
vehicles (UAVs) and intrusion detection in the IoT networks.
Few-shot learning (FSL) offers a promising solution by enabling
models to grasp the concepts of new classes using only a limited
number of labeled samples. However, prevalent FSL techniques
are primarily tailored for tasks in the computer vision domain
and are not suitable for the wireless signal domain. Instead
of designing a new FSL model, this work suggests a novel
approach that enhances wireless signals to be more efficiently
processed by the existing state-of-the-art (SOTA) FSL models.
We present the semantic-consistent signal pretransformation
(ScSP), a parameterized transformation architecture that ensures
signals with identical semantics exhibit similar representations.
ScSP is designed to integrate seamlessly with various SOTA FSL
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models for signal modulation recognition and supports commonly
used deep learning backbones. Our evaluation indicates that ScSP
boosts the performance of numerous SOTA FSL models, while
preserving flexibility.

Index Terms— Deep learning, few-shot learning (FSL), Internet
of Things (IoT), signal processing.

I. INTRODUCTION

THE burgeoning field of the Internet of Things (IoT) has
garnered immense interest due to its promise of extending

Internet connectivity to everyday physical objects [1], [2],
[3], [4], [5], [6]. This technology has led to the deployment
of a plethora of interconnected devices, permeating both our
personal lives and industrial processes. Due to the open nature
inherent in the IoT devices, these interconnected devices
frequently function in environments lacking trust, thereby
leaving them vulnerable to numerous active, malicious attacks.
Automatic modulation classification (AMC) [7] is the conven-
tional approach to identifying physical-layer threats, such as
anomalous unmanned aerial vehicle (UAV) jamming [8] and
pilot jamming [9], by determining the modulation type and cal-
culating the related modulation parameters for noise-affected
signals within a complex radio environment [10].

Recently, deep learning-based (DL-based) AMC [11], [12],
[13] approaches have achieved decent performance on vari-
ous applications by learning representations from large-scale
labeled datasets. Unfortunately, the situation of few samples
or insufficient samples is common in many IoT applications,
including but not limited to intrusion detection, anomaly
detection, and fault diagnosis. For example, in the city surveil-
lance applications, a model needs to a quick adaptation to
detect new or unknown drone models in sensitive areas with
limited data. However, the few-shot cases present unique
challenge; as illustrated in Fig. 1, the anomaly detection
model trained with insufficient signals may generate an inferior
decision boundary (in red), overfitting to the existing observed
abnormal samples. However, the distribution of real abnormal
samples (in gray) is often larger than the observed abnormal
samples, making the learned detection model less effective
in detecting new abnormal signals from similar UAVs. Alter-
natively, developing a mechanism that allows the model to
learn a superior decision boundary when insufficient samples
are provided can significantly improve the robustness and
generalization of the AMC system.
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Fig. 1. Example of an inferior decision boundary in an abnormal UAV
detection application when insufficient abnormal radio signals are provided.
The inferior decision boundary (in red color) often leads to poor generalization
ability for other abnormal UAVs that are presented in training samples.

In order to address the challenge of label scarcity by increas-
ing the quantity and diversity of samples, various augmentation
techniques and meta/metric-based approaches have been pro-
posed, such as AFHN [14], MAML [15], and ProtoNet [16].
These meta/metric-based approaches typically aim to learn
an efficient base model from a large dataset and adapt it
to few-shot classes using distance measurement or gradient
optimization. However, the availability of a substantial base
class in the radio signal processing domain is often limited,
and the direct application of these approaches may lead to
the problem of “inadequate generalization.” Specifically, the
semantic information or signal patterns are not effectively
learned by those methods with limited base samples, rendering
the few-shot adaptation less generalizable. As depicted in
Fig. 2, the conventional few-shot learning (FSL) framework
would suffer from indistinguishable latent problems. The class
distribution often exhibits considerable intraclass variation,
and the phenomenon of interclass pattern overlapping obscures
the decision boundary, thereby compromising the final classi-
fication performance [see Fig. 2(a), (c), and (e)].

Furthermore, the conventional augmentation-based
approach primarily relies on spatial transformations or
adversarial generation, ensuring semantic/pattern invariance
visually. However, in the domain of radio signal processing,
signal patterns are often invisible and noninterpretable.
The direct adaptation of spatial augmentation approaches
could destroy the inherent pattern, thus causing performance
degradation. In addition, in addition to the previously
mentioned challenges, inherent signal properties further
complicate conventional FSL. These include the following.

1) Modulated signals often experience noise interference
during transmission in open environments, complicating
the representation learning process.

2) Radio signal data exhibits distinctive characteristics,
such as periodicity and symmetry, which may pose
challenges for deep learning models with limited sample
sizes.

To address the aforementioned issues, we introduce
a parameterized radio signal transformation framework,

semantic-consistent signal pretransformation (ScSP). The
primary concept behind ScSP involves the extraction of high-
density constants, for instance, semantic information/signal
pattern, while eliminating nonconstant elements, such as
additional noises. This leads to improved intraclass con-
centration [19] of constants, enhancing the performance of
downstream FSL methods. To achieve that, we design a
framework to encourage the model to learn meaningful rep-
resentations that capture invariant (i.e., semantic-consistent)
features across augmented versions of the same instance while
discriminating against representations from different instances.
Specifically, we deeply investigate the signal pattern expres-
sion form (e.g., the constellation of the IQ signals) and propose
the info-preserved augmentation module to generate diverse
augmented signals without modifying its original semantic
information (i.e., modulation type). Then, to minimize the
noise interference, we present an adaptive noise filtering mod-
ule that transforms the parameter of the conventional Gaussian
noise filter into a learnable layer, enabling it to adaptively
capture various patterns of noise. Furthermore, we present
an amplitude–phase feature enhancement module to improve
fine-grained/semantic feature extraction with amplitude–phase
transformation. Finally, the InfoNCE [20] loss is applied to
maximize the mutual information of the augmented versions
of the same instance so to encourage the consistent pat-
tern extraction. Based on our current understanding, ScSP
stands as the pioneering framework that addresses few-shot
automated modulation recognition by enhancing the pattern
expressiveness of signals via expert knowledge-guided pre-
transformation. Comprehensive experiments and analyses have
been conducted, resulting in the following primary insights.

1) The current SOTA FSL approaches achieve noteworthy
performance improvements on the task of radio signal
modulation FSL, by incorporating the suggested ScSP
framework.

2) We show that the combination of the info-preserved
augmentation and the adaptive noise filtering is
more suitable under high-noise conditions, while the
entire ScSP framework works better under low-noise
conditions.

3) We propose a measurement method to comprehensively
study the impact of the noise on radio signal rep-
resentation after amplitude–phase transformation. The
semantic information represented by the transformed
signals positively correlates with the signal noise level.

II. RELATED WORK

A. DL-Based Automatic Modulation Recognition

Automatic modulation recognition refers to the modulation
category identification of the received radio signals. This
technology is widely used in spectrum management [21], [22],
interference identification [12], and electronic reconnaissance
systems [11]. There have been many attempts to perform mod-
ulation recognition with DL-based methods. Hong et al. [23]
proposed a two-layer GRU to capture the information from
context level (i.e., time dimension) and feature level. Later,
West and O’Shea [24] proposed CLDNN, which combines
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Fig. 2. Latent space visualization of the radio signal feature embedding space for test samples in the Signal-128 dataset, as reported [16], [17], [18]. The
“/ScSP” represents the combination with the proposed ScSP framework. (a) RelatNet. (b) RelatNet/ScSP. (c) ProtoNet. (d) ProtoNet/ScSP. (e) MatchNet.
(f) MatchNet/ScSP.

the convolutional neural network (CNN) and long short-term
memory (LSTM) to enhance the feature-level information
extraction. To further improve the feature extraction ability,
Zhang et al. [10] utilized a deep residual network model
to conduct the classification task, while the training process
is time-consuming. Nonetheless, neither of these DL-based
methods considers signal preprocessing (e.g., noise filtering)
according to its particular properties. Previous work [25]
presents that special properties, such as noise, often lead to
a significant performance drop on DL-based methods. This
issue becomes more critical when sufficient signal samples are
unavailable (i.e., few-shot situations). Moreover, the DL-based
frameworks with insufficient samples often suffer from the
overfitting problem, which leads to poor generalization ability
and unsatisfied results.

B. Few-Shot Learning

Typically, traditional FSL techniques are categorized into
either inductive or transductive inference, depending on the
inference setting. Inductive inference approaches classify indi-
vidual unlabeled samples, whereas transductive inference ones
classify multiple query samples simultaneously. The induc-
tive inference strategies can be further subdivided into the
following.

1) Metric-Oriented Methods (e.g., Matching Network [18],
Prototypical Networks [16], and ReNet [26]): These
techniques aspire to establish a series of projection func-
tions (embedding functions) and metrics that quantify
the similarity among samples.

2) Meta-Oriented Methods (e.g., MAML [15] and Pro-
toMAML [27]): These techniques leverage a model-
agnostic meta-learner to develop an efficient base model
across multiple training tasks, which can be adapted to a
new task with a limited number of training samples via
a few gradient steps, resulting in a model with decent
generalization ability.

3) Augmentation-Oriented Methods [14], [28]: These
methods aim at creating diverse sample generation
strategies for unfamiliar classes to foster representa-
tion learning. Recently, transductive inference meth-
ods (TIMs [29] and LaplacianShot [30]) have emerged
as an appealing approach to tackling few-shot tasks,
which have better performance than inductive inference.

Although the abovementioned state-of-the-art (SOTA) FSL
methods have achieved decent results on various vision-based

tasks [31], [32], adapting these methods to process radio
signal data remains challenges. A few works [10], [33] have
recently been proposed to perform few-shot recognition on
modulated signals. However, those methods mainly focus on
extracting fine-grained information from signals with specific
network structures. Zhou et al. [34] proposed a GAN-based
signal sample generation method to solve the first challenge.
However, this generation method only maintains the integrity
and consistency of the generated signals, that is, to generate
integral signals with a similar pattern. When sufficient samples
are unavailable (i.e., low quantity), the generated samples
tend to be identical while losing the diversity. In this article,
we propose an efficient and flexible signal data transformation
framework that allows the SOTA FSL algorithms can be easily
applied to solve the radio signal modulation recognition FSL
problem.

III. PROBLEM FORMULATION

A. Background Knowledge

In wireless communication systems, modulation aims to
add information to a set of signals by varying one or more
properties of periodic electromagnetic waves (carriers), which
can be transmitted [35]. A transmitted time modulation signal
r(t) can be illustrated as follows:

r(t) = S(t) ∗ h(t) exp
[

j2π1 f t + ψ0
]
+ noise(t) (1)

where ∗ represents the convolution operation, S(t) denotes
the modulated signal, h(t) represents the impulse response
of the wireless channel, 1 f indicates the carrier frequency
offset, ψ0 signifies the initial phase, and noise(t) refers to the
environmental noise.

To facilitate signal information extraction and signal recov-
ery, in-phase signals and the quadrature-phase signal are used
to jointly characterize the relevant modulation information,
i.e., I –Q data [36]. So, we define the received discrete
complex signal as x I Q = {x I , xQ}, which is sampled from
r(t) {

x I , xQ
}

= sample
{
r I (t), rQ(t)

}{
r I (t), rQ(t)

}
= {Re{r(t)}, Im{r(t)}} (2)

where x I denotes the in-phase signal, xQ represents the
quadrature-phase signal, Re is the real part, and Im indicates
the imaginary part. For the AMC task, the modulated signal
segment x (i.e., sampled from x I Q) and its corresponding label
y are used for the training procedure (feature extraction).
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Fig. 3. Structure of the proposed ScSP framework. The ScSP framework consists of two stages of the training paradigm. Stage 1: The base and support set
samples are fed into the noise filtering module for noise removal. Then, the augmentation module receives the noise-filtered samples for augmentation (i.e.,
creating two variations of one sample). Finally, the shared weights encoder is optimized by InfoNCE loss to extract pattern-consistent representations from the
augmented samples. Stage 2: The pretrained ScSP framework takes the input samples and outputs the domain-specific signal representation for downstream
FSL algorithm training.

B. Automatic Modulation FSL

The automatic modulation FSL (AMFSL) operates in two
phases: 1) on the training stage, a model is trained on a set
of base classes, and a new set of novel classes is defined as
support set for novel classes learning and 2) then, a query
set with identical classes as the support set is presented for
novel classes prediction on the evaluation stage. We define
the base training set as Db = {xb, yb

}, where xb is the
quadrature modulated signal segment and the corresponding
label yb

⊂ RCB belongs to a total of CB base classes. The
support set is denoted as Ds = {x s, ys

}, ys
⊂ RCK , where CK

is the novel classes, and each class includes N samples. The
remaining Q samples in CK novel classes form the query set
Dq = {xq , yq

}, yq
⊂ RCK [18]. It should be noticed that the

novel classes on support set and query set are disjoint with
base training set classes (i.e., CK ∩ CB = ∅). As a result, the
objective of the FSL settings could be formulated as follows:

min(ϵerror) = E(xq ,yq )∼Dq

[
f ′

(
xq)

̸= yq] (3)

where ϵerror denotes the target error on query set and the f ′

represents the trained FSL using base and support set.

IV. MODULATED SIGNAL PRETRANSFORMATION

To extract constant semantic content from the signals, our
objective is to optimize the mutual information between two
signal segments, x1 and x2, sharing similar semantics. This
can be expressed as follows:

I (x1, x2) =

∑
x1,x2

p(x1, x2) log
(

p(x1, x2)

p(x1) · p(x2)

)
. (4)

In order to achieve this, the ScSP framework is designed to
minimize the InfoNCE loss [refer to (18)]. Fig. 3 illustrates
the primary elements of the ScSP framework as follows: 1)
the info-preserved augmentation module augments the input
signals, maintaining the modulation type constant, to assist
in the minimization of the InfoNCE loss; 2) the adaptive
noise filtering module diminishes the impact of nonseman-
tic information (i.e., inherent Gaussian noise); and 3) an
amplitude–phase feature enhancement module transforms the

signal into amplitude and phase for semantic information
enhancement. The last two components are served as the
enhancing module for the InfoNCE loss, which aims to
maximize the mutual information from two augmented signals
to get constant semantic information.

Chen et al. [37] articulate that the effectiveness of InfoNCE
in the extraction of semantic information can be significantly
enhanced through data augmentation. The enhancements are
realized via two primary avenues: 1) data augmentation serves
to expand the volume of training data and 2) it also elevates the
count of semantically similar data entries, thereby optimizing
the mutual information. However, compared with image-like
augmentations, signals’ intrinsic properties (e.g., modulation
type) are often invisible, making designing proper signal aug-
mentation methods challenging. Inspired by the constellation
diagram [38] in the signal processing community, where the
representation of the digital modulation scheme is obtained,
we draw the axial projection (i.e., similar to constellation
diagram) of different signals to investigate the special prop-
erties. Fig. 4 illustrates the axial projection of signals in
three different modulation types. We find it shares similar
properties to the constellation diagram where the semantic
information of signals is obtained. Therefore, we designed four
types of axial projection-invariant augmentation to generate
information preserved data samples.

A. Info-Preserved Augmentation

1) Flipping: Our left–right flipping is an asymmetrical
adjustment of the signal timing relationship, while the fre-
quency (i.e., modulation information) remains unchanged.
Moreover, the left–right flipping will not affect the axial
projection to preserve semantic information. For a given
quadrature modulated signal x in original length L with
t-index time step value x(t) and a flipping augmentation
operation gflip(x), the flipping operation can be formulated as
follows:

gflip(x) : x(t) → x(L − t) ∀t ∈ [0, L] (5)
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Fig. 4. In the right part of the figure, we show the process of obtaining a 2-D modulated signal from the 1-D real and imaginary parts of the signal, which
leads to the axial projection. In the left part of the figure, we show three types of modulation, each with six axial projections.

Fig. 5. Visualization of signal rotation operation.

2) Interception: The modulation is applied to the whole
signal segment, so that the intercepted signals still share the
same semantic information as the original signal. Therefore,
the intercepted signal can be treated as a weaker representation
of the original signal, since the axial projection of intercepted
signal is nearly identical (sparse) to the original signals. For
a segment of a quadrature modulated signal, denoted as x ,
with an initial length L , the process of interception can be
represented as follows:

ginter
(
x, a, L ′

)
: x → xa,L ′ =

[
x(a), x(a + 1), . . . , x

(
a + L ′

)]
(6)

where xa,L ′ denotes the intercepted signal and L ′ signifies the
set interception length. The beginning point of interception, a,
should be chosen within the range [0, L − L ′

].
3) Rotation: To facilitate the illustration of rotation,

a quadrature modulated signal/complex signal [39] segment x
can be represented as the in-phase and quadrature-phase parts
of signals, respectively. The relationship between these signals
is given by

x = x I + j · xQ (7)

where j is a imaginary number, that is, j = (−1)1/2.
Fig. 4 presents that the semantic information of the mod-

ulated signals is rotation-invariant, such that character is
used in the signal generation. Hence, we utilize the Euler
formula [40] for rotating the initial signals (refer to Fig. 5).
For a signal modulated in quadrature, we can represent the

rotation operation as follows:

grotate(x, θ) = x · eθπ j

= (xR + j · x I )(cos(θπ)+ j · sin(θπ)) (8)

where grotate(x, θ) signifies the rotation augmentation opera-
tion and θ ∼ U (0, 2π) illustrates the rotation angle originating
from the uniform distribution.

4) Conjugate Transformation: Inspired by the generation of
constellation diagram, we develop conjugate transformation as
follows:

gconjugate(x) = x I − j · xQ where j =
√

−1. (9)

We only change the in-phase part x I of signal, and its semantic
information is preserved.

B. Adaptive Noise Filtering

This section introduces a parameterized Gaussian-based
noise filter that can filter noise for various radio signals.
Previous study [13] presents that adding a Gaussian noise
filtering module will vastly reduce the negative effect of
noise and improve the final recognition result. The Gaussian
filter [41] can suppress high-frequency information to a certain
degree, thereby generating smoother signals with less high-
frequency noise. However, the conventional Gaussian noise
filtering approach is ineffective in addressing the diverse
changes in noise intensity and signal types when using fixed
parameters. Hence, we transform the parameter of the conven-
tional Gaussian noise filter into a learnable layer, enabling it
to adaptively capture various patterns of noise. The Gaussian
filtering operation F(x) can be formulated as follows:

f (x) = x ∗ G s.t. G(n) =
1

√
2πσ

e−
n2

2σ2 (10)

and G(n) represents the n-indexed variable of the Gaussian
filter kernel. The parameter σ can be fine-tuned through
learning to accommodate varying signal types. Furthermore,
the ideal filter f ∗

θ (x) should display equivariance [37] to the
augmentations g(x), which implies that the order of augmen-
tation and filtering can be interchanged without altering the
outcome

g
(

f ∗

θ (x)
)

= f ∗

θ (g(x)). (11)
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Consequently, adopting this presumption, we employ the
parameterized filter fθ to mimic the optimal filter by reducing
the constraint loss

LG = ∥g( fθ (x))− fθ (g(x))∥2
2 (12)

C. Amplitude–Phase Feature Enhancement

Rajendran et al. [42] observed that converting modulated
signals to amplitude–phase format would benefit the represen-
tation learning of DL models. Furthermore, for modulation
types, such as amplitude-shift keying (ASK) and phase-shift
keying (PSK), the modulated signal S(t) uses the changes in
amplitude and phase to carry the information of the binary bit
stream sb(t), that is,

ASK : S(t) = Acsb(t)exp
[

j2π fct
]

PSK : S(t) = Acexp
[

j2π fct + j2π
(
1psb(t)+ ψ0

)]
(13)

where Ac denotes the carriers amplitude, fc represents the car-
rier wave, and 1p is the phase modulation factor. From (13),
we can observe that the instantaneous amplitude A(t) and
instantaneous phase ψ(t) of the carriers are linearly dependent
with sb(t), which can be represented by

A(t) = Acsb(t) ∝ sb(t)

ψ(t) = 1psb(t)+ ψ0 ∝ 1psb(t) (14)

Equations (13) and (14) demonstrate that the variation of
A(t) and ψ(t) carries the main information of the modulated
signal. In this case, we present the amplitude–phase feature
enhancement module to transform signals into amplitude and
phase, allowing the downstream deep learning model to learn
their features better. The discrete amplitude Ar and discrete
phase ψr modal of the signal at the receiver side can be
extracted by the following operations:

Ar =

√
x2

I + x2
Q

ψr = arctan
(
xQ/(x I + ϵ)

)
(15)

where ϵ denotes the microconstants. More specifically, Fig. 6
illustrates the procedure of the transformation on the axial
projection of signals. The point on the axial projection is
represented by abscissa, and the ordinate is converted to radial
length and angle.

Finally, we leverage the concatenation operation to extract
information from discrete amplitude and discrete phase simul-
taneously, which can be represented as follows:

E(x) = concat{Ar , ψr } (16)

where E(x) represents the enhancement operation. concat
denotes the concatenation operation.

The transformed signal has a simpler representation than
it is presented as abscissa and ordinate. With the simpler
representation, the information of the axial projection is easier
captured by the feature extractor.

Fig. 6. Transformation of signals into amplitude and phase (right).

D. InfoNCE Loss-Based ScSP Pretraining

The pretraining of the ScSP is formulated as a unsupervised
learning procedure. Mini-batch signal segments are first sam-
pled from the base and support set to perform info-preserved
augmentation. Then, the augmented signal segments will be
processed by adaptive noise filtering and amplitude–phase
feature enhancement modules to remove the carried noise and
enhance the signal representation. Finally, a shared weight
parametric model (e.g., CNN) is employed to transform the
signals into advanced representations for training. It is note-
worthy that all components in the ScSP framework undergo
concurrent training, optimized by the constraint loss LG and
InfoNCE loss LC . This can be formulated as follows:

L = LC + LG . (17)

Specifically, the InfoNCE loss could be formulated as follows:

LC = −Ex i
1,x

i
2∼p(x1,x2)

log
h
(
x i

1, x i
2

)
∑N

j ̸=i h
(

x i
1, x j

2

)}


h(x1, x2) = exp
{
sim

[
gθ (x1), gθ (x2)

]
/α

}
(18)

We define the ScSP framework as gθ , and the temperature
parameter is represented by α. We measure the similarity
between u and v using the cosine similarity, which is defined
as sim(u, v) = uTv/∥u∥∥v∥, serving as the dot product of
l2 normalized u and v. Augmented samples drawn from an
identical signal, x i

1 and x i
2, are deemed as positives, while

augmented samples from different signals, denoted as x i
1 and

x j
2 , are considered negatives. After the pretraining, the trained

ScSP framework will extract the representation of all signal
segments from the base, support, and query set for further
few-shot learning usage.

V. EXPERIMENT

A. Datasets

Our proposed ScSP framework is assessed across three
benchmark datasets: Signal-128 [7], Signal-512, and Signal-
1024 [46]. The numbers in the dataset names correspond to the
lengths of the respective signals (e.g., Signal-128 represents
the signals with 128 lengths).

Signal-128 represents a comprehensive public radio dataset,
comprising eight digital variations (BPSK, QPSK, 8PSK,
16QAM, 64QAM, BFSK, CPFSK, and PAM4) and three
analog ones (WB-FM, AM-SSB, and AM-DSB). Each mod-
ulation type is associated with 20 distinct signal-to-noise
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TABLE I
FIVE-WAY FEW-SHOT CLASSIFICATION ACCURACY ON THREE BENCHMARK DATASETS. “ORIGIN” SIGNIFIES THE RESULT OF FSL WITHOUT APPLYING

THE SCSP FRAMEWORK, WHILE “+SCSP” IMPLIES THE OUTCOME OF FSL INCORPORATING THE SCSP FRAMEWORK. “+” OR “−” SYMBOL
INDICATES A RESPECTIVE INCREASE OR DECREASE IN PERFORMANCE. PEAK PERFORMANCE IS HIGHLIGHTED

USING AN UNDERLINE (“_”)

ratios (SNRs), each accompanied by 1000 samples. SNR,
expressed as signal/noise, is a key measure of signal quality,
where a high SNR value signifies less noise interference in
the signal.

Signal-512 is a private dataset that factors in several
complex aspects of communication systems, such as carrier
phase, pulse shaping, frequency offsets, and noise. The dataset
includes 12 different modulation types, namely, BPSK, QPSK,
8PSK, OQPSK, 2FSK, 4FSK, 8FSK, 16QKAM, 32QAM,
64QAM, 4PAM, and 8PAM. The SNR of each modulation type
is uniformly distributed within a range from −20 to 30 dB.
Each data sample comprises 64 symbols, oversampled at a
rate of 8, leading to a total of 512 sampling points for each
sample.

Signal-1024 is a publicly available radio signal dataset
comprising 24 distinct types of both digital and analog mod-
ulations. These modulation methods include OOK, 4ASK,
8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK,
32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM,
128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-
WC, AM-DSB-SC, FM, GMSK, and OQPSK. The data in
Signal-1024 was obtained from environments characterized
by high SNR and low fading, which pose complex signal
classification challenges. The dataset is structured, such that
each modulation method is represented across 26 unique
SNRs, with 4096 samples provided for each SNR.

B. Experimental Setup

1) Evaluation Models: We carried out the implementation
of the proposed ScSP framework using PyTorch [47] and
performed the training process on a Tesla V100. To evalu-
ate the performance of our ScSP framework, we employed
six existing FSL models for comparison. These included
MAML, MatchNet, ProtoNet, RelatNet, TIM-GD, TIM-ADM,

and ReNet. Previous studies [48], [49] present that decent
performance of radio signal recognition can be achieved
without a complex network structure. Moreover, the complex
network structure (e.g., ResNet-18) with ample parameters
may suffer from the overfitting problem when samples are
insufficient, which affects the recognition performance. There-
fore, we followed these studies and replaced the backbone
of the existing FSL models with the modified CNN and
ResNet.

2) Experimental Setting: Most radio signal datasets have
very limited classes; for example, Signal-128 only has eight
digital modulation classes and three analog modulations. The
later may be impossible to conduct FSL task, due to the
lack of base classes. Therefore, for all following experi-
ments, we select two classes as the base training set, and
the remaining classes form the support and query set. This
setting is more challenge than that with sufficient base classes.
Following previous studies [14], our experiments are carried
out in two different setups: 5-way-5-shot and 5-way-1-shot.
In these settings, we deal with five new classes, where
each has only 5 and 1 instances, correspondingly. Each
dataset is explored under four distinct SNRs: −4, 0, 10,
and 18 dB.

3) Training Setting: We employ the Adam optimizer [50]
with a learning rate set at 0.001 to train our framework.
We limit the maximum training epoch to 50. Depending on
the setup, the batch size for input varies—we use 70 for
the 5-way-5-shot configuration and 42 for the 5-way-1-shot
arrangement.

C. Experimental Results

Table I presents the efficacy of our ScSP framework in
enhancing the performance of the existing SOTA FSL methods
in both 5-way-1-shot and 5-way-5-shot modulation recognition
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Fig. 7. Ablation study on single info-preserved augmentation operation
under 5-way-5-shot setting. The dotted line indicates the average performance
change, and “I,” “R,” “C,” and “F” represents the “interception,” “rotation,”
“conjugation,” and “flipping” operations, respectively.

tasks with varying backbone structures. Notably, our MSP
framework, in combination with RelatNet, yields the highest
performance improvement in six tasks, averaging a growth of
18.33%.

In addition, we note a marginal performance enhancement in
the 5-way-1-shot task utilizing the Signal-512 dataset. A slight
performance decline of approximately 0.13% is observed for
ProtoNet with a CNN backbone. A potential explanation for
this phenomenon could be the significant intraclass gaps within
the Signal-512 dataset, making it challenging to learn the
statistical properties of different categories from a solitary
sample. This hypothesis is further substantiated, as the per-
formance gain on the Signal-512 dataset improves when the
number of samples is increased (i.e., 5-way-5-shot).

D. Ablation Study on Augmentation Operation

In this section, we carefully study the impact of each
operation in augmentation for downstream FSL models. Our
evaluation is performed on the aforementioned three datasets
with −4- and 18-dB SNR, respectively.

1) Metrics: The performance change is presented as a
percentage that is calculated by the FSL+ScSP recognition
accuracy minus FSL recognition accuracy.

Fig. 7 shows each operation of ScSP can improve the
performance gain for any downstream FSL models. In addi-
tion, we observed that rotation operation outperforms other
operations, which brings the top improvement in five out
of six groups. One possible assumption is that the semantic
information of most signal modulation categories is rotation-
invariant (i.e., mentioned in Section IV-A). Thus, the rotation
operation can well preserve signals’ semantic information

Fig. 8. Ablation study on stacking single info-preserved augmentation
operation under 5-way-5-shot setting. The experiments are conducted on three
datasets with −4- and 18-dB SNRs condition. The“/” indicates the combina-
tion (e.g., I/R means the combination of “interception” and “rotation”).

Fig. 9. Ablation study on 5-way-5-shot task for three datasets. “A,” “F,”
and “E” represents the augmentation, noise filtering, and feature enhancement
module, respectively. The dotted line indicates the average performance
change. The “/” indicates the combination (e.g., A/F means the combination
of augmentation and noise filtering).

while improving its diversity by randomly selecting the rota-
tion angles. As a result, this operation outperforms other
augmentation methods.

Furthermore, we observe that the RelatNet obtains more
significant performance gains than other methods. This may
be caused by the sensitivity of the complex network to
the diversity of training samples. Also, the sample spaces
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Fig. 10. Latent space visualization of the query set classes based on the feature extractor trained on base set classes. (a) Raw signal representations.
(b) Pretrained ResNet (supervised) representation. (c) Contrastive pretrained (unsupervised) representation. (d) Pretrained ScSP (unsupervised) representation.

generated by our proposed augmentation operations do not
overlap. Therefore, we believe that the different augmentation
operations can be stacked to generate more samples. To ver-
ify the effectiveness of augmentation operation stacking in
improving model performance, we test the performance gain
by stacking augmentation operation sequentially.

From Fig. 8, we can observe that the performance gain of
the different models is increased with the stacking of aug-
mentation operations, which presents the importance of sample
diversity to representation learning. Moreover, we can observe
that the performance gain in −4 dB is relatively lower than
that in 18 dB on the Signal-512 dataset. We conjecture that
the noise factor in the Signal-512 dataset affects augmentation
operations’ abilities.

2) Takeaway: The aforementioned results present that both
single and stacking augmentation operations can boost the
performance of few-shot recognition under different noise
conditions. Furthermore, the stacking of four augmentation
operations can generate more diverse samples.

E. Ablation Study on ScSP Framework

In order to evaluate the individual and combined efficacy of
components within the ScSP framework, we conduct experi-
ments that isolate each component and its combinations. Fig. 9
shows that the following hold.

1) Single Component Often (But Not Always) Contributes
Positively to the Task: For example, under the high
SNR, where the input signals contain less noise, the
improvement of the single noise filtering module is
marginal. Furthermore, the feature enhancement might
cause negative effects, especially under a low SNR (i.e.,
input signals contain more noise). One possible conjec-
ture is that the FSL is overfitting to the enhanced base
set when the sample is insufficient.

2) Combination of “A, F” and “A, F, E” Works Better
Under High-Noise and Low-Noise Conditions, Respec-
tively: Specifically, the enhancement module contributes
positively to the FSL task when signals contain less
noise, while it brings negative impacts in high-noise
situations. Our conjecture is that the noise might affect
the carried information in signals (e.g., in amplitude or
phase), which makes the feature enchantment module
amplify the negative effects of the noise. We will

Fig. 11. SNR investigation experiments. (a) SNR investigation. (b)–(d) Effec-
tive information measurement on three datasets. “Diff” indicates the difference
between the accuracy of (A/F/E) and (A/F) combination, while the “EIR”
denotes the EIR. The “A_P” represents the amplitude–phase.

describe this effect in the subsequent SNR investigation
section.

F. SNR Investigation

Following the conjecture from the previous section, that is,
the feature enchantment module amplifies the negative effects
of the noise, we conduct experiments for the combination of
(A/F/E) and (A/E) under four different SNR scenarios (i.e.,
−4, 0, 10, 18 dB). From Fig. 11(a), we observed that the accu-
racy difference between A/F/E and A/E is gradually decreased,
accompanied by the decrease of noises. This phenomenon
presents that when the signal contains less noise, the feature
enhancement module starts to bring a positive effect. Since
the feature enhancement module provides a transformation to
convert signals to a better representation processed by deep
learning models, we assume that the semantic information rep-
resented by the transformed signals has a positive correlation
with SNR.

Therefore, we define the effective information rate (EIR)
for a noisy signal x as the normalized mutual informa-
tion [51] between a noisy signal x and a corresponding
pure signal x̂ to measure the correlation between them (i.e.,
NMI = I (x; x̂)/max{H(x), H(x̂)}), where I denotes the
mutual information and H represents the information entropy.
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Next, we use CLUB [52] to estimate I and H , and the
measurement results are shown in Fig. 11(b)–(d).

Fig. 11(b)–(d) shows that EIR has a positive correlation
with SNR. The transformed signals (i.e., amplitude–phase) are
affected more by the noise. For example, Fig. 11(b) illustrates
that, under SNR:5 condition, the EIRs are 0.93 and 0.52,
corresponding to original and amplitude–phase. The large
difference presents that the noise affects the carrying informa-
tion in amplitude–phase, making representation learning more
challenging. We believe this is the reason why the feature
enhancement module does not work effectively when the SNR
becomes low.

G. Latent Visualization

To further verify the effectiveness of our ScSP framework—
(whether a better intraclass concentration is provided),
we applied t-SNE to generate visualizations for latent features
on the Signal-128 dataset. Fig. 10 illustrates the t-SNE plot
for the raw signal data [Fig. 10(a)], ResNet pretrained fea-
ture [Fig. 10(b)], contrastive pretrained feature [Fig. 10(c)],
and ScSP pretrained [Fig. 10(d)]. We can witness that the
clusters of latent features under ScSP pretraining [Fig. 10(d)]
are more distinct than the ResNet pretraining [Fig. 10(b)]. Fur-
thermore, we observe that the ScSP pretraining latent features
present more organized results (with intraclass and interclass
concentration) than the normal contrastive pretrained latent
features [Fig. 10(c)], which demonstrates the effectiveness of
our ScSP framework.

VI. CONCLUSION

We introduce a novel radio signal preprocessing framework,
ScSP, designed to supplement various SOTA FSL models
for the task of modulation recognition. The ScSP framework
employs info-preserved augmentations, generating a variety of
signal segments and eliminating associated noises. A feature
enhancement module within the framework aids in simplifying
the signal representations, thereby fostering efficient rep-
resentation learning. Comprehensive experimental outcomes
validate the efficiency of the proposed ScSP framework.
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