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Advanced communication systems andmilitary reconnaissance are increasingly
prevalent in high-tech environments, greatly supported by the flourishing in signal
processing technologies. The recent exponential proliferation of sensors led to an
unprecedented expansion in the scale and diversity of signals across various modalities.
Such an influx poses significant challenges in effectively integrating multimodal signal
data to deliver comprehensive and interpretive solutions across a diverse range of
applications. In this article, we provide an overview of the core issues, challenges, and
future research directions in different stages of developing large-scale multimodal signal
processing models. Additionally, we introduce a prior investigation into signal
representation learning, where we propose a contrastive-learning-based framework to
extract fine-grained signal features under few-shot conditions. Our proposed framework
achieves a 24.1% performance improvement over baseline approaches, consistently
demonstrating superiority over state-of-the-art methods. The code is accessible in this
repository: https://github.com/YYH211/LSM.

Benefiting from the powerful pattern extraction
capabilities of deep learning approaches,1,2,3

the signal processing community starts to dis-
cern meaningful patterns from raw signals that may
lack visual interpretability. This has led to notable
achievements across a range of applications, including
cognitive radio, military reconnaissance, threat evalua-
tion, and spectrummonitoring, among others.

Recently, the contemporary digital landscape is wit-
nessing an unprecedented surge in signal generation,
stemming from an increasingly diverse array of sensors
and devices. The generated signals are often present in
a multitude of modalities, encompassing a variety of

types (e.g., radar signals, Wi-Fi signals, and modulated
signals) as well as various formats (e.g., constellation dia-
grams and spectrograms), driving the need for more
sophisticated and efficient methods to manage and
interpret this vast influx of data. Nonetheless, existing
methods tend to be task specific, modality restricted,
and generalization limited, making them less capable of
handling complex applications and potentially leading to
adverse impacts, as illustrated in the following examples.

SMART SEMANTIC
COMMUNICATION

The next generation of end-to-end intelligent semantic
communication systems equipped with AI technology
has been proposed due to the problem of transmission
errors with the binary bit streams used in traditional
communication. In this new paradigm, the multimodal
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information (text, speech, images, etc.) being transmit-
ted is compressed into semantic information at the
transmitter and decoded at the receiver. The use of
semantic transmission effectively mitigates the bit
error rate problem at low signal-to-noise ratios (SNRs).
However, there is still a huge gap between the current
version of semantic communication and its practical
application, i.e., the general semantic communication
model that has not yet been developed.

As depicted in Figure 1, conventional semantic
communication approaches predominantly utilize end-
to-end neural networks, rendering them deficient in
generalization to novel signals. Consequently, when
senders transmit novel signals via conventional seman-
tic communication, they encounter semantic diver-
gence issues, leading to inaccuracies in reconstructing
the novel signal message from the receiver 1 perspective.
In contrast, in the new paradigm (i.e., multimodal-based
smart semantic communication), the model on the
receiver 2 side should be able to fuse the multimodal
data knowledge and give an analysis. Such a communica-
tion paradigm could provide more high-quality message
transmission ability as well as the generalization ability.

Given these circumstances, the urgency to develop
a large-scale multimodality model for signal process-
ing has become more apparent. The AI community has
already seen revolutionary advancements in the vision
and language processing fields with the rise of large-
scale multimodality models, such as PixelBERT4 and
PaLM-E.5 However, signals often possess unique
attributes that distinguish them from images and
texts, presenting new challenges in the development
of large-scale multimodality models. To this end, we
comprehensively investigate the primary challenges

encountered throughout the lifecycle of designing
multimodality signal models and outline the corre-
sponding key research directions.

The main contributions are summarized as follows:

This is the first position article that comprehen-
sively investigates the key challenges and cor-
responding research directions in developing
large-scale multimodal signal models.
We propose a novel contrastive-learning (CL)-
based framework for learning fine-grained signal
representations under few-shot sample conditions,
which serves as a foundational step in the design
of multimodality signal model architectures.
Extensive experiments were conducted, and we
studied the proposed framework in detail. The
promising results suggest its effectiveness.

BACKGROUND
Automatic modulation recognition contributes as the
mainstream task in the communication signal process-
ing domain, which aims to identify the modulation cat-
egory of the received radio signals. This technology is
widely used in spectrum management, interference
identification, and electronic reconnaissance systems.

Due to the label scarcity property of communica-
tion signals, large-scale signal processing often relies
on unsupervised learning approaches, which can be
mainly divided into two categories: context-based
methods,6,7,8,9 which aim to leverage local–global con-
trastive optimization to extract meaningful information
from raw signals, and instance-based methods,10,11

which aim to leverage localwise or instancewise con-
trastive optimization for the same purpose. However,
the previous approaches, mainly adapted from the
vision or language domain, neglect the impact of noise
on the unique properties (such as frequency, phase,
and amplitude) in the signal domain. When applied to
data migration between different signal scenarios,
these methods may suffer from model collapse and
accuracy degradation.

CHALLENGES AND
POTENTIAL DIRECTION

In this section, we briefly investigate the key challenges
during the multimodal signal model development life-
cycle (as presented in Figure 2). Specifically, we analyze
the issues encountered throughout the development
lifecycle due to the distinct properties of signals, such
as noise interference, unique characteristics, and the
challenge of objective interpretability.

FIGURE 1. The difference between the current semantic commu-

nicationmodel and the smart semantic communicationmodel.
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Data Processing
Challenge—Data Contamination
A problem also studied in the context of large lan-
guage models,5 this challenge pertains to the possibil-
ity of testing content available on the Web being
unintentionally included in the training data. This can
lead to a distortion in the performance evaluation of
high-capacity models. The issue of data contamination
in signal data (e.g., modulated signals and radar sig-
nals) can be markedly more complex, as signals are
often transmitted in open environments that are prone
to substantial noise interference. Such data contami-
nation could distort the original patterns that exist in
signals, resulting in erroneous interpretations and
inaccurate model predictions.

Potential Direction—Noise Reduction
The problem of model instability due to noise interfer-
ence in signals is significant, as noise types and sources
differ. Traditional noise reduction approaches work well
in vision and language processing, but the unique chal-
lenges of signal noise due to air transmission require a
different solution. One proposal is an adaptive noise-
filtering module that can adjust to different types of sig-
nals. This could include a system combining a condi-
tional signal module and a denoising module, which
would apply specific conditions to the noisy signal and
clean it at the feature level. This would help the learning
system adapt better from the start. Another suggestion
is equivariant learning,12 which maintains the consis-
tency of noisy data under different transformations. This
would need a specialized augmentation/transformation
function designed around the specific properties of
signals, such as symmetry and periodicity, for the

optimization of the equivariance constraint. This approach
could enhance the denoising capability of the system.

Challenge—Modality Discrepancy
Benefiting from the inherent complementary nature
and shared semantics across vision–language–speech
modalities, cross-modal integration/fusion has been
extensively studied and achieved significant advance-
ments in various applications. However, the signal
domain presents significant heterogeneity for different
modalities, ranging from different categories (e.g., radar
and Wi-Fi signals) to varied representations (e.g., con-
stellation diagrams and spectrograms). The absence of
inherent semantic links largely increases the complex-
ity of feature alignment, which could result in negative
information interfering with the future feature extrac-
tion procedure.

Potential Direction—Multimodal
Expert Labeling
The recent advancements in cross-modal/multimodal
learning systems are largely accredited to the existing
extensive parallelized cross-modality data (i.e., images
with corresponding text descriptions). However, as the
aforementioned signal domain limitation, the semantic
connection has still not been defined and investigated.
A penitential solution for connecting different modali-
ties on a signal domain could be “Expert Attribute Gen-
eration.” For example, similar to the vision fields that
describe the observable distinguishing properties
(e.g., “black: yes, stripes: yes, eats fish: no”) of
objects as text auxiliary information, the observable
distinguishing properties of signal domain (e.g.,
“temporal frequency, amplitude, and pulse”) could

FIGURE 2. Challenges of the large-scale multimodal signal model development lifecycle. EMI: electromagnetic interference; UAV:

unmanned aerial vehicle.
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be introduced. By introducing such intermediate attrib-
utes with text and numerical descriptions, the large-
scale learning system would be able to map various
signals into shared semantic subspace for feature-level
cross-modality interaction and information comple-
mentariness. Additionally, the designed attributes will
largely affect the final performance of the learning
system, so expert domain knowledge should be consid-
ered during the design.

Network Architecture
Challenge—Complex Feature Modeling
The recent advancements in the vision and language
processing community can be largely attributed to the
specially designed network architecture (e.g., trans-
former and its variants), which is capable of modeling
complex patterns, such as spatial–temporal patterns,
from images and text tokens. These designs often take
into account the inherent properties and characteris-
tics of the image/text data being processed. For exam-
ple, the attention mechanism is designed to capture
the contextual relevance of different image/text pieces.
This allows the model to concentrate on the most
salient aspects, enhancing its interpretive capabilities
and decision-making process. However, signal data are
typically present in a complex-valued format, involving
both magnitude and phase components. Most deep
learning architectures only utilize half of the spectral
input (i.e., the real-valued part), leading to information
loss during the feature extraction process. Further-
more, signal data often exhibit patterns through the fre-
quency or time–frequency domain, requiring the
network architecture to be designed to capture the
interaction between temporal dynamics and complex
frequency.

Potential Directions
Spectrum–spatial–temporal modeling: Conven-
tional spatial–temporal modeling is introduced to
capture fine-grained dynamic correlated features
from a sequence of data samples and achieves
decent performance on tasks such as video
analysis/summary and time series modeling.
However, signals present an additional dimen-
sion (i.e., a spectrum) to express a pattern or
information that is not able to be captured by
the approaches from the vision and language
domains. A potential solution might be to entan-
gle the designed spectrum learning layer with
spatial–temporal modeling. For example,
dynamic convolution with kernels of different
sizes could be introduced to capture fine-
grained spectrum features. Additionally, fusion

mechanisms, such as bilinear/multistage fusion
on the kernel level (e.g., different kernel sizes)
and feature level (e.g., spectrum and
spatial–temporal features) should be further
explored for better feature-level interactions
and to prevent information loss.
Dynamic network capacity: The large-scale
models, with their substantial data processing
capabilities, often contain a high capacity for
pattern memorization from extensive datasets.
The current large-scale models typically pos-
sess a predefined and fixed capacity, which
largely restricts the continual learning ability of
the learning system. Such phenomena become
more crucial when facing continuous incoming
signal data. A potential solution might be to
construct an expandable network structure for
the designed complex modeling architecture.
For example, similar to disentangled represen-
tation learning in the vision community, the
network architecture could be separated into
distinct components13 (e.g., top-, intermediate-,
and low-level feature extractors) to enable net-
work capacity expansion. The dynamic expan-
sion is triggered when the network capacity
reaches the upper boundary so as to provide
the foundation for the subsequent tuning pro-
cedure. Additionally, the integration of dynamic
structure with the aforementioned spectrum–
spatial–temporal modeling may be difficult to
train due to the extremely disentangled and
complex architecture. Thus, considering spe-
cific training paradigms to facilitate dynamic
network expansion could also be investigated
in the future.

Network Tuning
Challenge—Domain-Restricted Tuning
To exceed the performance limits of conventional fine-
tuning techniques for downstream tasks, prompt-
driven tuning has been well studied in large-scale lan-
guage models. Prompt-driven tuning aims to design
customized prompts (e.g., different questions) with
the correct answers for the tuning process so as to
break through the upper bound. However, restricted
by the special characteristic of the signal domain,
where the raw signals often suffer from noninterpret-
ability, the definition of prompt in the signal domain is
still unclear.

Potential Directions
Network incremental learning: Recently, related
incremental learningmethods have been introduced
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into wireless signal recognition, such as the con-
tinuous registration of new devices via in-phase
and quadrature (IQ) signals for Internet of
Things centers, providing incremental update
capabilities for aircraft identification systems.
However, the similarity of signals from wireless
devices under the same communication proto-
col makes it difficult for the model to learn the
differences between the new classes and the
old classes at the same time. Therefore, based
on classical incremental learning algorithms, the
large model feature extraction capabilities, such
as multimodal signal feature extraction, should
be used to provide more fine-grained features to
distinguish between new classes and old clas-
ses. Providing discriminative multimodal fea-
tures in the common space of new and old
classes is of significant importance for incre-
mental learning.
Prompt tuning: To mitigate the semantic gap and
overfitting problems between downstream tasks
and pretrained models, prompt tuning techni-
ques are currently being extensively researched
in natural language processing. However, as
mentioned previously, due to the lack of appro-
priate prompts in the signal domain, they are cur-
rently not applied. A potential approach in the
signal recognition scenario might be to construct
specific conditional templates for different down-
stream tasks. For example, the conditional
autoencoder can embed conditional variables for
downstream tasks, thus continuing to drive the
fine-tuning process internally. Another possible
way to perform prompt learning on a signal
model is to transform the template into signal

data, which can be added to a neural network for
self-supervised learning. Overall, it is of great
research significance to perform prompt tuning
on the signal model to exploit the potential of
the pretrained model.

EARLY EXPERIENCE
Based on the discussed design philosophy and meth-
odology, we propose a large model framework that can
effectively mine knowledge from large-scale signal
datasets. As shown in Figure 3, to accelerate the
deployment for different downstream tasks, a prelimi-
nary attempt is made to capture generic signal fea-
tures for all downstream tasks in a self-supervised
learning manner. We explore the two principal direc-
tions of noise filtering and spectrum–spatial–temporal
modeling. Specifically, we implement a novel generic
signal representation learning framework based on
CL. Compared to the traditional contrastive-learning-
based framework, we make specific modifications to
the network structure and data augmentation and
achieve significant improvements in signal recognition.

Signal Augmentation
To increase the diversity of signal samples so as to
encourage the feature extraction of CL, we simulta-
neously apply two data augmentation methods (i.e.,
cropping and rotation). Given an input signal sample,
we first crop a subsegment of fixed length according to
a random number that diversifies the samples and
focuses on different parts of the original signal to
enhance feature extraction. Then, we rotate the sam-
ple by a random rotation angle to further enhance the
sample diversity.

FIGURE 3. The framework of the proposedmethod.
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Signal Cropping
For signal cropping, we have designed a patch-based
cropping mechanism to preserve local information
integrity and reduce the impact of noise on signal rec-
ognition. We performed one cropping on each signal to
extract a subsequence S0 of length l from the original
data of lengthL, as follows:

S0 ¼ CropðL, l,SÞ ¼ S½a : aþ l� for l� L (1)

where S is the original signal data, and a is a random
number between zero and L� l. For IQ signals, the
modulation information generated should be stable
across various short-time delays, indicating that similar
modulation information is carried regardless of the
cropping location.

Signal Rotation
After cropping the signal data, we apply a random rota-
tion to further augment the data features. Considering
that a direct rotation of the signal would destroy its
integrity, we propose a semantic invariant rotation
method. First, we write the signal data in the form

S ¼ xreal þ ximag � j (2)

where xreal and ximag are 1xN vectors for the in-phase
(I) and quadrature (Q) signals, respectively, and j indi-
cates the imaginary part. From (2), it is obvious that the
data distribution of an IQ signal can be represented in
the complex plane. For this reason, we retain its com-
plex plane distribution and perform an overall random
rotation of it. Therefore, we use the rotation matrix of
the 2-D plane for IQ to obtain Ŝ :

Ŝ ¼ ^xreal

^ximag

� �
¼ cosh �sinh

sinh cosh

� �
xreal

ximag

� �
(3)

where h is a randomly generated angle ranging from
zero to 2p. Note that this rotation mechanism will not
destroy the original IQ plane distribution.

Pretraining With CL
Motivated by SimCLR,10 we design a pretraining frame-
work based on CL. CL learns intraclass and interclass
features by comparing the differences between different
augmented samples to enable self-supervised feature
extraction. In particular, we explore the spectrum–
spatial–temporal modeling in depth to design a special
backbone network that can integrate multimodal signal
data.

By exploring the unique representation of signal
data, we find that the signal features are mainly
expressed in the time and frequency domains. We
design two independent encoders to combine the data
characteristics of different modalities: 1) We use XCiT14

as an Encoder_s of the raw time series data since this
network mainly uses channel self-attention and can
better extract similar semantic features between IQ
channels. 2) The Encoder_f submodule acts as a fea-
ture extractor for the signal data after the fast Fourier
transform, which will help to extract its frequency
domain information. The joint extraction of time and
frequency domain information will provide a more fine-
grained feature representation for downstream tasks
of the signal.

After that, we use the NT-Xent15 loss for our CL
framework, which is defined as follows:

L ¼ �E

 X
i2B

�
log

expðsimðsi, s0iÞ=sÞX
k2B, k 6¼i

expðsimðsi, skÞ=sÞ

�!
(4)

where E denotes the expectation, B is the current
batch size, si is the original sample, s0i is the augmented
sample, and s refers to the temperature parameter.
The cosine similarity is used as the simð:Þ function
in (4):

simðsi,s0iÞ ¼
sTi s

0
i

ksikks0ik
(5)

where k � k denotes the l2 norm.

Fine-tuning
In machine learning, the freezing of partial weights is
generally used to quickly train new classes. This means
that only a small set of the parameters is fine-tuned.
We use the same treatment in our fine-tuning phase.
As shown in Figure 3, the pretrained encoder is
migrated directly to the fine-tuning phase and is fol-
lowed by a head for a specific downstream task. As
mentioned before, the head (we choose the simplest
multilayer perception as the head) is updated without
updating the parameters of the encoder. In detail, we
use a small amount of labeled data to fine-tune using
the cross-entropy loss. The augmented data can be
obtained in two branches after passing through the
network, and we concatenate them in the horizontal
dimension.

INITIAL RESULTS
Experimental Setup
We evaluate the performance of the proposed model on
the commonly used dataset RadioML2016.10a.16 The
dataset contains 11 different signal modulation catego-
ries, which include binary phase-shift keying (PSK), qua-
ternary PSK, 8PSK, quadrature amplitude modulation
(QAM) 16, QAM64, continuous-phase frequency-shift
keying (FSK), four-level pulse AM, wideband frequency
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modulation, AM-single-sideband modulation, binary FSK,
and AM–double-sideband. It contains 11,000 signals per
SNR, with each modulation category comprising 1000
samples under the length of 128. In the pretraining
phase, we run 300 epochs with an Adam optimizer with
a learning rate of 0.001 to optimize our model. In the
fine-tuning phase, we train the downstream task heads
with an Adam optimizer with a learning rate of 0.0001
about 2000 epochs, which means that the weights of
the backbone in the pretraining phase are frozen at this
stage. In all experiments, we utilize two distinct random
seeds. For each seed, we perform 10 trials and compute
the average. This averaged value represents our final
experimental results.

Setting Downstream Tasks
Asmentioned previously, the large model for the signal
can be applied to different downstream tasks. To vali-
date the performance of the network in Figure 3, we
focus primarily on the validation of the proposed model
in two downstream tasks [i.e., few-shot learning (FSL)
and supervised learning (SL)] in signal modulation clas-
sification. In addition, we compare the performance of
different CLmethods under our framework.

In the FSL task, we follow the criteria in computer
vision17 to divide the signal modulation categories. Spe-
cifically, there are six categories for pretraining with
1000 samples per category. We conducted five-way,
one-shot and five-way, five-shot classification in the
fine-tuning period, and all contain 500 query signals for
each of the sampled categories. In the SL task, we
divide the data set similarly to the FSL task. The differ-
ence is that, in SL, the pretraining phase has a large
amount of labeled data. We compare the gap between
unsupervised CL and SL. It is worth noting that the
sample categories for the supervised pretraining and
fine-tuning tests are not the same. In addition, in CL
experiments, we evaluate different CL algorithms (i.e.,

SimCLR,10 SimSiam,11 and SCLBSS18). For fair comparison
with the previous results reported in the literature, we
follow the data partitioning method of Liu et al.18 by
dividing each category in the RadioML2016.10a dataset
into three parts: training, validation, and testing, with a
ratio of 2:1:1. Five samples from the training set are used
for fine-tuning, and the rest are used as pretraining sam-
ples. Specifically, each category includes pretraining
samples; fine-tuning samples; verification samples; and
test samples of 495, five, 250, and 250, respectively.

Results
In this section, we experimentally compare several
recent algorithms in CL, FSL, and SL settings. First, we
compare three CL algorithms (SimCLR,10 SimSiam,11

and SCLBSS18) under the same data division. In Figure
4(a), at all SNRs, our method achieves better results
compared to other algorithms. In particular, our
method achieves an accuracy of 73.71% at an SNR of 4
dB, which outperforms SimCLR, SimSiam, and SCLBSS
by 24.1%, 23.7%, and 8.71% in accuracy, respectively.

Then, in Figure 4(b), we evaluate the pretrained
model in a downstream task of FSL. Based on the
described dataset partitioning criteria, the five-way,
five-shot and five-way, one-shot tasks are tested, and
we have compared several classical FSL networks, like
prototypical network19 and relation network.17 Our
framework achieves more than 92% accuracy on a five-
way, five-shot task when the SNR is above 0 dB, with a
maximum accuracy of 99.09%. Compared to the other
two methods, our method improves accuracy by 20%
on average. It is worth noting that the contrastive
methods exhibited a significant performance drop at
SNR levels of –6 dB and 6 dB. The potential consump-
tion could be the contaminated signal data, which dis-
rupts the structural features of the original signal,
thereby increasing the difficulty of model recognition.
Importantly, while other methods merely map a few

FIGURE 4. Experimental results on different downstream tasks on the RadioML 2016.10a dataset. RN: relation network.
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samples to the most similar feature space using proto-
types and functions, they often overlook the challenge
of dissimilarity. In contrast, our method specifically
addresses this issue, leading to more stable model
results.

Finally, we compare the proposed model with SL.
Our model is compared by performing supervised pre-
training on a large amount of labeled data and then
fine-tuned with one-shot or five-shot samples. In detail,
we compare the CNN2, CNN-LSTM, and ResNet18 algo-
rithms. As Figure 4(c) shows, when the SNR is higher
than 0 dB, our framework has an improvement of at
least 20% over the three networks compared, with a
maximum improvement of 60%. It is evident that SL
models are only able to extract features related to
known classes and are unable to generalize over new
classes.

Discussion
In essence, we tested our proposed framework on sev-
eral downstream tasks. The results, as depicted in Figure
4, illustrate the strength of our method in signal extrac-
tion. This success is mainly due to our extractor, which
can extract features from both the time and frequency
domains, offering a more comprehensive understand-
ing compared to typical off-the-self networks. Our data
augmentation strategies, such as cropping and rota-
tion, eliminate unnecessary information and increase
sample diversity, thus accelerating feature learning and
improving model generalization. Although good results
have been achieved in all experiments, there is still
room for improvement here. The accuracy in the FSL
method with a low SNR needs further improvement,
and the performance is unstable in the one-shot fine-
tuning setting.

CONCLUSION
The rapid development of communication technology
has brought great challenges to the processing of mul-
timodal signals. In this article, we made an in-depth
study of large-scale models in the field of signal data
and illustrated the problems, future challenges, and
research directions for different stages of the develop-
ment lifecycle. Moreover, a preliminary study has been
conducted, wherein a multitasking signal model has
been proposed. This model has demonstrated decent
results across multiple tasks. However, there are areas
that necessitate further improvements, specifically
when dealing with noisier data. Additionally, the issue
of unstable accuracy during fine-tuning with a small
number of samples also urgently requires a solution.
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