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Abstract—Many efforts paid attention to the multi-modal task,
of which image captioning is a classic work. Especially the Clip
model improves the performance of image captioning; meantime,
its few-shot and zero-shot problems have become a significant
research project. In this work, aiming at the image captioning
task, we design the new few-shot and zero-shot settings different
from popular directions. The direction focuses on the impact
of the exited dataset for captioning model ability. According to
analysis, we discover the frequency of the word combination can
directly influence the performance of the captioning model. Based
on this, we define the new few-shot and zero-shot settings. In
terms of this, a Cycle-based captioning framework based on data
augmentation is proposed to overcome this problem, of which
the novelty switcher module is the critical component. Finally,
experiments demonstrate that our framework can achieve state-
of-the-art performance on both traditional, few-shot and zero-
shot settings.

Index Terms—Image captioning, cycle-based, switcher module

I. INTRODUCTION

As a traditional task in deep learning, image captioning
aims to describe an image in natural language. Therefore,
it generates a sequence of words by designing a model to
reflect the relationship between visual and textual information.
Recently, many efforts paid attention to tackle this task by
applying Recurrent Neural Network models, Graph Neural
Networks and Transformer. Especially the Transformer model
can extract more key knowledge between an image and cap-
tion to achieve state-of-the-art performance. As a significant
revolution in deep learning, few-shot and zero-shot learning
provide more inspiration. Few-shot learning aims to predict the
correct classes when only a few samples are available in the
training dataset. Zero-shot learning aims to predict the correct

* Equal contribution. †Corresponding author.

Fig. 1. The normal, few-shot and zero-shot settings on the Test Set based on
Word Combination Frequency.

classes which are not observed in the training dataset. [1].
For example, the zero-shot capability was demonstrated in
computer vision [1]. Besides, the seminal CLIP [2] image-
text transformer model can execute tens of downstream tasks
without further training. Impressively, the DALL-E [3] can
generate images in terms of unseen descriptions. Although
existing algorithms can generate good descriptions on the
traditional testing set, the image captioning task needs to be
more attentive to the few-shot and zero-shot settings.

In the visual-textual multi-modal task, the relationship be-
tween images and texts is the most important factor. Therefore,
several efforts have analyzed the impacts of the word on the
model performance. For instance, Yan [4] demonstrated that
word frequency affects image-text matching model perfor-
mance. However, compared with a single word, word com-
binations are more critical to the meaning and understanding
of a sentence. Different word combinations include amounts
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of semantic information, which means that the frequency of
word combinations has more effects on model performance
compared with the frequency of a single word. Figure 1
describes the proportions of the normal, few-shot and zero-
shot based on word combination frequency on the test set.
The few-shot and zero-shot settings have fewer proportions
than the normal setting, which are 9%, 28% and 63%. We
do experiments to analyze the impact of word combination
on the image captioning task in the methodology section to
prove our hypothesis. Furthermore, different from traditional
few-shot and zero-shot settings, we propose a new direction
of few-shot and zero-shot settings based on this hypothesis in
the image captioning task.

Generally, few-shot and zero-shot methods increase the
model generalization to improve the model performance in
the kinds of tasks, and data augmentation is the most straight-
forward direction. In terms of this, we propose a novel
Cycle Captioning Framework to improve the model ability
on the traditional setting and the new few-shot and zero-shot
settings for the image captioning task. In the framework, the
proposed Image Generator generates the image with feature-
level as new training data to feed into the Caption model;
meanwhile, the proposed Word Switcher reasonably exchange
words of the caption to augment the training data. Summary
the contributions:

• According to the analysis impact of word combination on
the image captioning task, the new few-shot and zero-shot
settings are proposed in this work. While improving the
performance of new settings promotes the extension of a
new direction on the image captioning task.

• The proposed Cycle Captioning Framework adequately
apply the existing data to improve the model generaliza-
tion ability on the image captioning task. At the same
time, we design a novel Word Switcher to augment the
training data.

• The experiments demonstrate that the Cycle Captioning
Framework with Word Switcher achieves state-of-the-art
performance.

The methodology section describes the details of word combi-
nation, Cycle Captioning Framework and Word Switcher. The
experiment and ablation study sections analyse the ability of
the proposed algorithm on the image captioning task.

II. RELATED WORK

As a traditional task, many efforts were applied to image
captioning. Specifically, [5] first proposed the deep learning
algorithm to predict the sequence of captions in image cap-
tioning. With the development of machine learning techniques,
more and more works extracted the semantics relationship
based on Attention and Graph neural networks [6]–[8]. Sub-
sequently, the image could be extracted more details through
a transformer with self-attention to improve the model perfor-
mance [9], [10]. On the one hand, plenty of efforts solved
the text problems based on improvements to the language
model such as LSTMs, Transformer, and CNNs [11], [12].

On the other hand, the generated language of image ground-
ing and non-vision words obtained a better performance by
combination with different semantic information [13], [14].
Specifically, as a popular language framework, Transformer
has been widely used in image captioning tasks. The CogView
constructed a 4-billion-parameter Transformer to achieve a
SOTA captioning performance [15].

Despite the captioning model experiencing an improvement,
also trained the large-scale vision-language data sets can
improve the generating captioning performance. Thus, some
image captioning tasks applied the large-scale vision-language
data sets in recent years, such as the Visual Genome and MS-
COCO. The captioning model utilized millions of image and
text pairs from the web to improve the generated language
performance [16] [17]. Based on this technique, some methods
applied the unsupervised external data through conditioning
the model during the training to focus on describing novel
objects [18] [19]. The model can execute external object
information in the pre-training and inference phases [20].
The model can join an image-language embedding space and
the visual detector for the unsupervised methods [21] [22].
Following this direction, the zero-shot language model CLIP
was proposed, which acquired a better score in the image
captioning task based on 400M image-sentence pairs from
the web [2]. Based on powerful CLIP, text-driven image
manipulation with GANs and other generative models can
be supported by means of CLIP [23] [24]. Unlike existing
image captioning few-shot and zero-shot learning directions,
we propose new few-shot and zero-shot settings in image
captioning. Our framework can augment the image-captions
pairs based on an existing data set.

III. METHODOLOGY

A. Few-shot and zero-shot settings

Many machine learning tasks apply the MS-COCO dataset
as a traditional dataset, such as object detection, text-image
generation and text-image matching. The MS-COCO also
is the most popular dataset in the image captioning task.
Therefore, we analysis the MS-COCO dataset to define our
few and zero-shot settings. As a key part, we define the
word combination that two objects or two nouns of a caption
construct a word combination; for example, in the caption “A
woman is drinking water.”, we define the ‘[woman, water]’ to
be a word combination. Each image includes five captions in
the MS-COCO dataset, and we collect about 44,712,680 word
combinations.

Based on the word combination, we define the few-shot and
zero-shot settings. Firstly, we count the frequency of all word
combinations, including the training set and testing set and
sort them based on their frequency. Then, applying the SOTA
models evaluate the data of high-frequency and low-frequency
word combinations, respectively. In this evaluation, the CIDEr
and BLEU-4 scores reflect the impacts of high-frequency
and low-frequency word combinations on the performance of
SOTA models, which is described by Figure 2. It shows that
the CIDEr and BLEU-4 scores decline with the decrease of the
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Fig. 2. The developments of CIDEr and BLEU-4 with frequency of word
combination

frequency of the word combination, which demonstrates that
SOTA models have terrible performance on the data of low-
frequency word combinations compared with the data of high-
frequency word combinations. Finally, we define the zero-shot
test set and the few-shot test set, respectively. The data of low-
frequency word combinations of the test set that do not appear
in the training set indicates the zero-shot test set. The few-shot
test set is the data of low-frequency word combinations of the
test set whose appearing frequency in the training set is less
than or equal to K.

B. Cycle Captioning Framework

The definition of the few-shot and zero-shot settings show
that the amount of data can directly affect the performance of
the captioning model. We propose a cycle captioning frame-
work that augments data diversity to overcome the problems in
the few-shot and zero-shot settings. Unlike other state-of-the-
art captioning models, our framework includes a feature-level
image generator and word switcher module in addition to the
captioning model. The interaction of the latter two modules
enhances the data and thus improves the performance of the
captioning model. The details of our framework are described
later in the process of cycle captioning framework section.

1) Process of Cycle Caption Framework: Given an image
feature X extracted from an image as input, it is sequentially
fed into the Captioning model Gc(.) and the Feature-Level
Image Generator Gi(.) to generate a sequence of vectors Ỹ as
a caption:

Ỹ = Gc(Gi(Gc(X ),X )), (1)

In our framework, two types of features are extracted from
images X : image feature map X and region features XR.
The sequence of captions Y is the same as image features,
also described by two representations: original captions Yr

and exchanged captions Yex.
The cycle process of the whole framework is divided into

two parts. In the first part, the real caption embeddings Yr, real
image feature map Xr and region features XR in the training
set enter the caption model and feature image generator to

obtain the generated caption embeddings Ỹr and image feature
map X̃r, respectively.

Ỹr = Gc(Xr)

X̃r = Gi(Yr, XR),
(2)

Then, the generated caption embeddings Ỹr and image feature
map X̃r as new training data are fed into two models to acquire
cycle caption embeddings Ỹf and cycle image feature map X̃f .

X̃f = Gi(Ỹr, XR)

Ỹf = Gc(X̃r),
(3)

Through the above steps, we realized the first step of data
expansion without changing the training data so that both
models could obtain more data for training.

In the second part, the caption embeddings and region
features XR in the training set first input into the word
switcher S(.) to obtain new exchanged caption embeddings
Yex and exchanged region features Xex

R :

Yex, X
ex
R = S(Yr, XR), (4)

Then these new training data are fed into the image gener-
ator Gi(.) and caption model Gc(.) to generate the predicted
exchanged captions Ỹex:

Ỹex = Gc(Gi(Yex, X
ex
R ), Yex), (5)

2) Captioning Model: Our caption model, inspired by
Mesh-Memory Transformer [13], is represented by Gc(.). It is
the encoder and decoder structure with stacks of self-attention
layers. The encoder module extracts the relationships from the
input image, and then the decoder module receives the output
of the encoder module to predict each word of a caption.
All connections between the image and caption are executed
by dot-product attention. The attention operator follows the
standard sets of the transformer, namely a set of queries Q,
keys K and values V , and according to the weighted sum of
value vectors with aggregation between query and key vectors.
The operator is shown as:

Attention(Q,K, V ) = softmax(QKT /d)V, (6)

where Q is a matrix of nq query vectors, K and V both contain
nk keys and values, all with the same dimensionality, and d is
a scaling factor. The encoder layers include the self-attention
and position-wise feed-forward with a residual connection and
a layer norm Addnorm, and then stacks of them define our
encoder module:

Oce = Addnorm(F(Attention(WqXr,WkXR,WvXr))),
(7)

where Wq , Wk, Wv indicate the matrices of learnable weights
and F(.) is position-wise feed-forward layer. The Oce repre-
sents the output of encoder module.

Then, the decoder collects outputs from the encoder module
and the self-attention mask module Smask to obtain a gener-
ated caption Ỹ , which is described by:

Ỹ = Addnorm(F(Attention(Oce, Smask(Y)))), (8)
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Fig. 3. The structure of Cycle Captioning framework. The green line is the training process using training data and the orange line indicates the training
process using predicted data. The purple line represents the switch module and the training process using exchanged data.

Fig. 4. The details of the switcher module. The red word is the exchanged
word and purple is the new word.

3) Feature-Level Image Generator: The image generator
synthesis an entire image in the most multi-modal task, which
is hard to optimize. However, the proposed feature-level image
generator only generates the image features from captions. The
Gi(.) represents the feature-level image generator (FL image-
G) in this work, whose structure is similar to the captioning
model based on the transformer. The main difference is that
captions Y combined with the image region feature XR are
the inputs to generate the image feature map X̃r.

In this generator, the image region feature provides extra
information to improve the accuracy of the synthesised image
feature map. The switcher module executes the image region
feature to generate the new exchanged image region feature
as weak ground truth to train the FL image-G. The reason is
that the switcher module can create the exchanged captions
but cannot generate the exchanged image feature map, which
means that when we apply the exchanged captions to train the
FL image-G, there is no ground truth of the image feature map
to supervise. But we can directly exchange the region proposal
feature corresponding to the exchanged object word to obtain

weak ground truth.
4) Switcher Module: The main novel part in our frame-

work, the word switcher module plays a key role. It is repre-
sented by S(.). We follow a principle every time we change
words: we only exchange one noun in a caption. However, the
exchanged word is not random because some new captions
constructed by newly exchanged words are not reasonable,
which means that these data can affect our model performance.
Therefore, we follow two steps to select the exchanged word.
The first step is choosing the newly exchanged word from
our word combination. For example, in the caption “A man
plays football.”, the word combination is ‘[football, man]’.
We first decide to exchange the word man, and we will
select the newly exchanged word from the combination list
containing the word ‘football’, such as ‘[football, woman]’,
‘[football, cups]’ and ‘[football, dog]’ etc. Then, these newly
exchanged words construct different new captions: “A woman
plays football.”, “A cups plays football.” and “A dog plays
football.”. The second step is to compute the similarity and
distance between these new sentences and original sentence
to select the final exchanged sentence:

Ldis = ||Yo − Ẏex||2,

Lsim =
Yo · Ẏex

||Yo||||Ẏex||
,

(9)

where Yo and Ẏex denote the original sentence and the new
sentence candidates, Ldis and Lsim are Euclidean distance and
Cosine similarity.

We can obtain the weak exchanged image region feature
when we acquire the final newly exchanged caption. We
collect the representations of each objects in the whole dataset.
Then, we obtain the comprehensive representations through
the Equation 10:

rc = (

N∑
n=0

rn)/N, (10)
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TABLE I
THE COMPARISON WITH SOTA ON NEW FEW-SHOT AND ZERO-SHOT SETTING. B@1, B@4, M, R AND C INDICATE BLEU-1 [25], BLEU-4 [25],

METEOR [26], ROUGE [27] AND CIDER [28].

Method Few-shot Setting Zeo-shot Setting
B@1 B@4 M R C B@1 B@4 M R C

Clip-VL [29] 72.80 19.30 27.38 54.13 97.11 72.27 17.06 26.84 55.30 92.75
Ours 74.41 24.26 27.76 58.02 113 73.30 22.88 29.43 58.54 110.68

TABLE II
THE COMPARISON WITH SOTA ON TRADITIONAL SETTING OF

MS-COCO.

Method Metrics
B@1 B@4 M R C

SCST [30] - 34.2 26.7 55.7 114
Up-Down [31] 79.8 36.3 27.7 56.9 120.1
RFNet [32] 79.1 36.5 27.7 57.3 121.9
GCN-LSTM [33] 80.5 38.2 28.5 58.3 127.6
ORT [34] 80.5 38.6 28.7 58.4 128.3
AoANet [35] 80.2 38.9 29.2 58.8 129.3
M2 Transformer [13] 80.8 39.1 29.2 58.6 131.2
Clip-VL [29] - 40.2 31.1 - 134.2
Ours 80.8 40.6 31.6 59.3 134.6

where rc and rn are the comprehensive representation and
each representation of object. For example, if the exchanged
word is ‘man’ and the new word is ‘woman’, we can acquire
their representations from the image region features by class
probability. We directly apply the comprehensive represen-
tation of ‘woman’ to replace ‘man’, which obtains the new
exchanged image region feature Xex

R based on this principle.
Figure 4 describes details.

IV. EXPERIMENTS

In this section, two evaluation settings demonstrate our
model performance. First, our model and SOTA models are
evaluated in a traditional setting. Then, our few-shot and zero-
shot setting, as the second setting, evaluate our model and
SOTA models.

A. Datasets

The MS-COCO is applied to evaluate our model perfor-
mance. The dataset includes more than 120000 images, and 5
different captions annotate each image. Most image captioning
tasks widely follow Karpathy’s split setup [36], where 110000
images are applied for training, 5000 for validation and the rest
for testing.

Regarding the Methodology section, the zero-shot and few-
shot settings are set up based on our word combination prin-
ciple. Hence, the zero-shot setting splits conventional images
for training and validation. We select partial images from the
standard test setting for zero-shot testing based on our zero-
shot principle. The training and validation set of our few-
shot setting also follows the common training and validation
setting, and we set K-shot (K = 2) to choose testing images.

B. Experiments settings

We follow the standard evaluation protocol to apply the typ-
ical image captioning metrics to show our model performance:
BLEU [25], METEOR [26], ROUGE [27] and CIDEr [28].

In terms of our framework, an object in the caption is
selected randomly to be exchanged with another different
object constructing a new caption and then generating a new
image feature, which means that the exchanged object of the
caption should correspond to the object of images. Hence,
we need to obtain image regions in our framework besides
the feature map. To acquire image regions, we execute Faster
R-CNN [37] with ResNet-101 [38] fine-tuned on the Visual
Genome [39] to obtain a 2048-dimensional feature for each
region. For caption representation, we linearly project words
of one-hot vectors to the input dimensionality of the model
d. Then, the positional encoder [10] represents word positions
added into the sequence to acquire two embeddings. In our
framework, the dimensionality d of each layer is set to 512,
the number of memory vectors is 10, and the number of heads
is 6. We follow the most common training strategy in image
captioning tasks, which is divided into two stages. The first
stage is training our captioning model and image generator
with a batch size of 256 and learning rate scheduling strategy
with a warmup to 100 epochs. Then, two models are optimized
with the Adam optimizer, and the beam size is set to 5. The
second stage is that the captioning model is fine-tuned with
CIDEr-D optimization with a fixed learning rate of 3× 10−4.

C. Comparison with state of the art

In this part, a comparison between the performance of
several recent SOTA proposals and our image captioning
framework in both settings demonstrates that our framework
can achieve SOTA performance. The compared models include
SCST [30] and Up-down [31], which applied attention to the
grid of features and regions, respectively. Then, the RFNet [32]
applies a recurrent fusion network to merge CNN features, and
GCN-LSTM [33] executes a Graph CNN to obtain pairwise
relationships between image regions. Further, our framework
compares with AoANet [35], ORT [34] and M2 Transformer
[13], which apply Transformer for encoding image regions.
Finally, we compare with the Clip-VL model [29], which uses
the pre-trained Clip model to extract the image region feature.

Our framework and aforementioned SOTA models evaluate
the traditional test split. Table II reports the comparison
performances, applying the caption model and fine-tuning
optimization on the CIDEr score. According to observation
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TABLE III
ABLATION STUDY FOR EFFECTS OF FEATURE-LEVEL IMAGE GENERATOR AND SWITCHER MODULE ON THE DIFFERENT SETTINGS. FL IMAGE-G
REPRESENTS FEATURE IMAGE GENERATOR AND SCM INDICATES THE SINGLE CAPTIONING MODEL. CYCLE MEANS OUR ENTIRE CYCLE-BASED

CAPTIONING FRAMEWORK.

Component Tradtional
Setting

Few-shot
Setting

Zero-shot
Setting

Method FL
Image-G

Switcher
Module B@4 M R C B@4 M R C B@4 M R C

Baseline × × 32.96 28.49 57.69 104.22 22.51 27.54 57.52 110.48 22.19 27.48 57.09 98.73
SCM ✓ × 33.62 29.31 58.04 110.63 23.08 27.73 58.03 111.50 22.27 27.63 58.01 110.02
Cycle ✓ ✓ 34.93 29.84 58.20 114.49 24.26 27.76 58.02 113 22.88 29.43 58.54 110.68

TABLE IV
THE COMPARISON WITH SOTA ON SINGLE CAPTIONING MODEL.

Method Metric
BLEU-1 BLEU-4 METEOR ROUGE CIDEr

Clip-VL 75.30 33.39 27.69 56.09 111.5
Ours 75.51 34.93 29.84 58.20 114.49

from Table II, our framework achieves the best performance
on BLEU-1, BLEu-4, METEOR, ROUGE and CIDEr. Our
framework especially increases the SOTA on ROUGE by 0.7.

Because the Clip-VL is the best performance, we compare
the testing results with it on our few-shot setting and zero-shot
test setting, which are represented by Table I. In particular, we
mainly report the performances of the few-shot setting with
K = 2. As it can be observed from Table I, the performances
of all metrics are worse than the traditional test setting, which
also proves that the frequency of the word combination can
impact the model performance. However, Table I indicates that
our framework surpasses SOTA approach in terms of BLEU-1,
BLEU-4, METEOR and ROUGE being the best performer.

To further prove our framework performance, Figure 5
proposes qualitative results and visualization. In all SOTA
approaches, the Clip-VL model is the best performer. Hence,
our framework compares with it. On average, our framework
can generate more accurate and reasonable captions to describe
the corresponding images. In addition, our framework also
describes more details and object relationships for images.

In addition, we compare the performance of the single
captioning model between our framework and the SOTA
model, which is shown by Table IV. Because most SOTA
image captioning models fine-tune the captioning model with
an reinforced strategy to improve performance, but a single
captioning model is the most significant part, which directly
represents the actual ability of captioning generation for each
SOTA approach. Table IV reports the results, showing that our
framework is the best performer on all evaluation metrics and
reflects our framework’s superiority. Although our captioning
model includes an image generator, it is a crucial augmentation
part of our captioning model, and our framework’s total
number of layers is fewer than other methods.

V. ABLATION STUDY

The quantitative and Qualitative results evident that our
framework achieves the best performance compared with other

SOTA models. Furthermore, this ablation study section reports
the effects of the feature-level image generator and switcher
module on task performance. To directly analyze the effects
of each component, the following experiments are executed
based on the single captioning model without the reinforced
fine-tuning strategy.

A. The Effect of Feature-Level Image Generator

A part of the cycle-captioning model, Table III proves that
the feature-level image generator produces essential effects for
the whole framework. Compared with the baseline, the entire
framework obtains a noticeable improvement in all settings
when applying the feature-level image generator. Significantly,
the ROUGE increase by approximately 0.51 points compared
with the baseline and acquires the best performance on the
few-shot setting. Impressively, the CIDEr improves by about
11.29 points in the zero-shot setting.

In our cycle framework, the feature-level image generator
based on transformer executes the image region feature to
generate the image feature map. Besides, we also applied the
traditional GAN to model it without the image region feature.
The Table VI reports the differences between two methods.
Besides the BLEU-4 of the traditional setting, the results of
GAN are worse than the transformer with region feature.
However, the performance of GAN is improved compared
with the baseline on all settings, which further proves that
our cycle framework can obtain an enhancement for the image
captioning task. The GAN-based image generator only applies
the caption to generate the image feature map without any
other data to supervise the model further. But the transformer-
based generator supervises the model by using the region
feature and the caption.

B. The Effect of Switcher Module

Switcher module is the most novelty component in the
whole cycle framework, which can exchange the word of a
caption to augment the new training data. Therefore, we try
different methods to improve the performance of the frame-
work. All methods are applied based on the cycle framework.
Table V, the Transformer based indicates no switcher module,
and Random represents that the switcher module randomly
exchanges a word in a caption. Both Word nearly and Com-
bination methods follow the word combination. The first one
means that we fix the first word of the word combination and
exchange its neighbour; for example, in a caption “A man
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TABLE V
THE COMPARISONS BETWEEN DIFFERENT SWITCHER METHODS.

Method Component Traditional Setting Few-shot Setting Zero-stho Setting
Switch Constraint Combination list B@4 C B@4 C B@4 C

Without Switch × × × 33.62 110.63 23.08 110.50 22.27 110.02
Random ✓ × × 33.41 104.38 22.04 104.01 20.66 100.68
Word nearly ✓ ✓ × 32.69 104.51 21.09 104.35 22.13 104.23
Combination ✓ ✓ ✓ 34.93 114.49 24.26 113 22.88 110.68

Fig. 5. The comparison of visualization with SOTA.

plays football.”, the word combination is ‘[man, football]’, we
will exchange ‘man’ neighbour ‘plays’ to other word based
on constrain. The second one is that we exchange the second
word of the word combination and select a new word from the
combination list of the first word; for instance, in a caption
“A man plays football.”, the word combination is ‘[man,
football]’, and we exchange the ‘football’. If the combination
list may include ‘[man, tennis]’ and ‘[man, baseball]’, we
select ‘tennis’ or ‘baseball’ to construct a new caption based on
the constraint. Table V indicates that the unreasonable switcher

TABLE VI
THE COMPARISONS BETWEEN DIFFERENT IMAGE GENERATORS.

Traditional
Setting

Few-shot
Setting

Zero-shot
Setting

Method B@4 C B@4 C B@4 C
Baseline 32.96 104.22 22.51 110.48 22.19 98.73
GAN
based 33.97 109.74 22.81 110.48 22.11 107.60

Transformer
based 33.62 110.63 23.08 110.50 22.27 110.02

method can destroy the ability of the whole framework,
such as the Random method and the Word nearly method.
These methods generate the new training data as noise to
attack the model. Although the Word nearly method executes
the word combination and constraint to generate the new
weakly reasonable caption, it still exits the instability when
exchanging a near word. Finally, we apply the interaction
between the combination list and constraint to generate the
new caption as much as stable. Table V demonstrates that our
switcher method supports the framework to achieve the best
performance, especially on the few-shot and zero-shot settings.

VI. CONCLUSION

In this work, we define the new few-shot and zero-shot
settings based on the principle of the word combination.
Meanwhile, a cycle-based captioning framework is proposed
to solve this task. Firstly, the word combination is designed
through the popular dataset. Then, the experiments demon-
strate that the word combination frequency can impact the
captioning performance of the model, proving that the pro-
posed few-shot and zero-shot settings are reasonable existing.
Finally, the cycle-based captioning framework augments the
data with a feature-level image generator and the novelty
switcher module to achieve state-of-the-art performance on
traditional, few-shot and zero-shot settings. Although the
cycle-based captioning framework acquires the best ability,
the algorithm of the switcher module can still be improved. In
the future, we can apply reinforcement learning to design the
switcher module, and the reward, as the feedback, can weakly
supervise the feature-level image generator.
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