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Edge-SAR-Assisted Multimodal Fusion for
Enhanced Cloud Removal
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Abstract— In Earth observation activities, cloud severely
affects the interpretation of high-resolution imagery, generated
by optical satellites. Therefore, removing clouds from optical
imagery becomes a topic of interest in the remote sensing field.
Currently, most methods use auxiliary synthetic aperture radar
(SAR) images to reconstruct optical images by merging SAR
and optical images into a deep learning network. However, the
speckle noise of the SAR image is not taken into consideration
during feature fusion processing, leading to blurry edges in
the reconstructed optical images. To get fine-grained optical
images, we propose a novel cloud removal framework based
on the edge fusion of SAR and optical images. First, the edge
feature of SAR images is extracted by the GRHED. As the
prior knowledge, it can provide fine-grained edge information for
subsequent reconstruction work. Then channels from three modal
data are stacked to guide the reconstruction of optical images
by exploiting their correlations and interactions. Furthermore,
a structural similarity (SSIM) loss function is introduced to
optimize the training network and improve the coherence of the
image structure. Experimental results confirm its advantages on
the SEN12MS-CR dataset.

Index Terms— Cloud removal, deep learning, edge extraction,
feature fusion.

I. INTRODUCTION

WITH the development of remote sensing technology,
high-resolution images generated by optical sensors

are available to support some comprehensive Earth obser-
vation applications, such as micro-object detection and fine-
grained semantic segmentation [1], [2]. However, coupled with
spaceborne optical imaging, the cloud cover becomes a big
challenge to interpret this kind of image. From the existing
works, there is more than 55% land covered by the cloud
in spaceborne optical images [3]. As a result, the contrast of
optical imagery reduces, and the crucial area in the image is
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obscured. For many remote sensing applications that rely on
continuously monitored data streams, such as agricultural mea-
surement and disaster monitoring [4], [5], cloud cover is a seri-
ous obstacle. Therefore, to ensure data quality and availability,
cloud removal is obviously essential for various applications.

The electromagnetic wave used for synthetic aperture radar
(SAR) imaging is not affected by clouds due to its excellent
penetration capability [6], [7], [8], thus largely mitigating
the challenge of cloud removal. SAR images can provide
texture and structural information of cloud-covered areas,
aiding in the reconstruction of contaminated optical images.
However, since SAR lacks spectrally resolved measurements,
certain domain-specific potentials and peculiarities remain
uncompensated. On the other hand, optical images contribute
spectral and spatial information to the contaminated regions,
making the generated images more consistent with ground
truth. Therefore, the complementary nature of SAR and opti-
cal images in remote sensing enables more comprehensive,
accurate, and clear image restoration results in cloud removal
tasks. Bermudez et al. [9] trained cGANs to learn the mapping
between SAR and optical images, attempting to generate
optical images directly from SAR images. However, due to
the different imaging principles of the two modalities, the
quality of the generated optical images could not be guar-
anteed. Grohnfeldt et al. [10] introduced a novel cGAN-based
approach for declouding by fusing SAR and optical imagery.
They expanded the network’s ability to read and fuse mul-
timodal remote sensing data. Gao et al. [11] used a two-step
approach to remove cloud, where they first transformed SAR
images into simulated optical images using CNN and then
fused SAR images, simulated optical images, and corrupted
optical images to reconstruct cloud-covered areas using GAN.
But the reconstructed image has spectrum deviation and loss
of texture. Meraner et al. [12] used a deep residual neural
network to eliminate clouds by fusing SAR and optical images.
However, this approach is inadequate for areas with thick
cloud where local information is entirely lost. It will lead to
low-quality image reconstruction. While these methods can
reconstruct contaminated images, they ignore the fact that
speckle noise in SAR images may distort edge information
in optical data. This can cause blurred edges in cloud-free
images and hinder the recovery of fine details, especially for
complex textures.

Inspired by [13], this letter proposes a cloud removal
method based on the fusion of multimodal data (SAR-edge-
optical). We use the GRHED [14] edge extractor to extract
SAR edges and incorporate multimodal data as the new
input for a deep residual neural network. This algorithm can
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Fig. 1. Overview of the proposed framework.

effectively transfer complementary information from SAR and
edge maps to optical images, overcoming the impact of SAR
speckle noise and generating reliable texture details.

The main contributions of this letter are as follows.
1) We propose a novel framework for cloud removal. The

fine-grained SAR edge is first extracted and then mul-
timodal data are fused to reduce the negative impact of
speckle noise of SAR images on image reconstruction.

2) To mitigate the issue of producing blurred images when
training a network with the L1 loss function, we intro-
duce a loss function called structural similarity (SSIM)
loss, which preserves fine-grained edge information by
minimizing the difference in structure between the orig-
inal and reconstructed images.

II. METHODOLOGY

The proposed cloud removal method consists of two
parts: edge feature extraction (EFE) of SAR images and
a ResNet-based deep feature extraction network. In EFE,
we adopt a CNN-based edge detector GRHED and obtain
binary edge maps with suitable thresholds. For the feature
extraction network, the multimodal data are fused and fed into
the convolutional network to extract hyperfeature maps, which
are then input into the ResNet-based network to reconstruct the
cloud-covered areas. Fig. 1 illustrates the overall framework.

A. SAR Edge Extraction

The pipeline of EFE is shown in Fig. 2. The SAR images
are input into a hand-crafted layer to generate gradient fea-
ture maps. The hand-crafted layer is defined by GR [15],
i.e., a ratio-based gradient computation method. Computing
GR can be seen as a method of data augmentation, which
enables learning fewer distribution types while keeping the
total amount of data unchanged.

For a given pixel located at position (x, y) in the image I ,
the horizontal and vertical gradient components (GR) can be
computed as follows:

Gh(x, y) = log
(

Rh(x, y)
)

Gv(x, y) = log(Rv(x, y)). (1)

Rh(x, y) is calculated as follows, and the computation of
Rv(x, y) can be performed in a similar manner:

Rh(x, y) =
mh

1(x, y)

mh
2(x, y)

(2)

Fig. 2. Architecture of EFE. The ReLU layer following the convolutional
layer is not displayed in an effort to simplify the network.

where

mh
1(x, y) =

W∑
x ′=−W

W∑
y′=1

u
(
x + x ′, y + y′

)
× e−

|x ′|+|y′|
α

mh
2(x, y) =

W∑
x ′=−W

−1∑
y′=−W

u
(
x + x ′, y + y′

)
× e−

|x ′|+|y′|
α (3)

and where W is the upper integer part of log(10) × α.
The magnitude Ggr(x, y) and orientation anggr(x, y) of GR

can be defined as follows:

Ggr(x, y) =

√
Gh(x, y)2

+ Gv(x, y)2

anggr(x, y) = arctan
Gv(x, y)

Gh(x, y)
. (4)

Subsequent testing is performed on gradient feature maps
computed with GR. The network backbone is derived from
the convolutional layers of HED [16], which are transformed
from the VGG16 network [17]. Specifically, the original fully
connected layers and the final max-pooling layer are discarded,
and the side outputs are added after five convolutional layers.
The convolutional layers could automatically learn abundant
hierarchical representations guided by deep supervision of the
side outputs, which is crucial for solving the challenging ambi-
guity in the detection of SAR edges. As the network goes more
profound, the scales of side outputs become smaller. To fuse
features from multiple scales, bilinear interpolation [18] is
used for upsampling the side outputs to the desired size.
Simultaneously, a weighted-fusion layer is introduced to learn
automatically how to fuse these five side outputs optimally
and obtain a fused output.

The final output is the average of all the outputs which
include five side outputs and one fused output. Afterward,
we use the nonmaximum suppression method [19] and then
obtain a binary edge map with an appropriate threshold.

As the dataset used does not have an edge ground truth
(refer to Section III-A for dataset details), training could not
be carried out. Therefore, we use pretrained weights to extract
edge maps from the SAR images.

B. Image Reconstruction Network

The edge map obtained in EFE will be merged with the
SAR and cloudy optical image as the new input to the network.
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As shown in Fig. 1, we use ResNet [20] as the network back-
bone, which consists of multiple ResBlocks. Each ResBlock
is composed of two cascaded convolutional layers, a ReLU
function, and a shortcut connection. The shortcut connection
achieves an additive identity mapping. In addition, we can
stack a variety of ResBlocks to achieve a deeper network,
extracting more deep-layer features.

Let x be the input, with H(x) being an expected output,
the residual mapping learned by multiple convolutional layers
can be defined as follows:

F(x) = H(x) − x . (5)

The residual mapping learned by the network is a correction
to the pixels of the input cloud-covered image. For scenarios
with thick clouds, i.e., clouds with high visual opacity [21], the
correction increases as the cloud thickness grows. In cloud-free
conditions, the information can be directly propagated from the
input to the output through the residual skip connections with-
out modification, maximizing the preservation of the original
image information.

In general, at the beginning of the network, the image’s SAR
channels and SAR edge channels are simply concatenated
to the other channels of the input optical image. Shallow
features are first extracted using convolutional layers. Then,
the network is transformed into nonlinearity with the use of the
ReLU activation function. Rich global features are extracted
through densely connected ResBlocks. SAR images with their
edge maps help compensate for the missing information in
the blurred areas. Finally, a 3 × 3 convolution restores the
dimension of features to match the optical image dimension.

C. Loss Function

Assume that the predicted image is X , the ground truth is Y
and the input image is I . L1 (average absolute error) is used
as the basic error function, as defined below

L1 =
∥X − Y∥1

N
(6)

where N is the total number of pixels.
To preserve the original information of the noncovered areas

to the greatest extent, the cloud mask (M) of the cloud-covered
optical image is extracted and it is incorporated into the
calculation of the loss function. This loss function is defined
as cloud-adaptive regularized loss [12], i.e., LCARL

LCARL =
∥M⊙(X − Y ) + (1 − M)⊙(X − I )∥1

N
+ L1. (7)

SSIM measures the similarity between two images and
evaluates quality based on the degradation of structural infor-
mation

SSIM =
(2µXµY + C1)(2σXY + C2)(

µ2
X + µ2

Y + C1
)(

σ 2
X + σ 2

Y + C2
) (8)

where µ, σ , and σXY denote the mean, variance, and covari-
ance of X and Y , respectively. In addition, use C1 = 0.012 and
C2 = 0.032 to avoid zero numerator or denominator.

The SSIM loss is highly sensitive to local structural changes
and assigns a higher weight to the boundaries, thus resulting

in higher losses in the vicinity of the boundaries. The SSIM
loss function can be expressed as follows:

LSSIM = 1 −
1
N

N∑
p=1

SSIM(p) (9)

where p is the center pixel of an image patch. The size of the
patch and Gaussian filter is 11 × 11.

To obtain cloud-free images with clear boundaries, a custom
loss function L D is defined as follows:

L D = LCARL + LSSIM. (10)

III. EXPERIMENTS

A. Dataset and Evaluation Metrics

The SEN12MS-CR [22] dataset is adopted in this work,
which is the first publicly available dataset for Earth observa-
tion cloud removal. It provides large-scale global and seasonal
coverage. The dataset comprises four seasonal subdatasets and
a total of 169 regions of interest. It includes the corresponding
Sentinel-1 dual-pol SAR data, Sentinel-2 13-band cloud-free
optical data, and cloud-afflicted optical data, each with a
size of 256 × 256. The SAR data include two polarizations,
namely, VV and VH. To validate the effectiveness of our
framework, we select 40 regions of interest from the spring
subdataset and divide them into train, validation, and test
sets at the ratio of 36:2:2. We evaluate the cloud removal
performance by four widely used metrics: peak signal-to-
noise ratio (PSNR), SSIM, mean absolute error (MAE), and
spectral angle mapper (SAM). The pixel-level reconstruction
performance of the image is evaluated with two metrics,
PSNR and MAE. SSIM reflects the spatial structure recovery
based on visual perception principles, while SAM indicates
the preservation of spectral information in the reconstruction
results. Higher PSNR and SSIM values, as well as lower
MAE and SAM values, indicate higher image quality in the
reconstruction.

B. Implementation Details

The proposed framework is implemented using publicly
available PyTorch. The batch size is set to 28, and the
maximum epoch of training iterations is set to 100 to reach
convergence. The learning rate is 7 × 10−5, and the number
of ResBlock is 16. The experiments are all performed on an
NVIDIA A100 80 GB PCIe.

C. Comparative Analysis and Visualization

To assess the performance of the proposed method with
varying cloud presence, optical images with cloud coverage
and shadow areas ranging from 0% to 20%, 20% to 40%,
40% to 60%, and 60% to 80% are selected.

The results of McGAN, SpA GAN, DSen2-CR, and Ours
on the SEN12MS-CR dataset are shown in Fig. 3. From
left to right, each column represents cloudy optical images,
SAR images, the images generated by McGAN, SpA GAN,
DSen2-CR, Ours, and the cloud-free optical images. McGAN
and SpA GAN tend to remove smaller and scattered thin
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Fig. 3. Qualitative results of cloud removal for from different scenes. The first column on the far left, from top to bottom represents cloudy images with
cloud and cloud shadow coverage ranging from 0% to 20%, 20% to 40%, 40% to 60%, and 60% to 80%, respectively.

TABLE I
QUANTITATIVE COMPARISONS OF PROPOSED

METHOD TO OTHER METHODS

clouds, as shown in the first row of Fig. 3, enabling the restora-
tion of relatively blurry textures beneath the clouds. However,
they cannot recover useful geospatial information under thick
clouds. Furthermore, the color fidelity of McGAN is signifi-
cantly poor, and the spectral information deviates notably from
the actual image. DSen2-CR outperforms previous methods
significantly in terms of texture information reconstruction and
color fidelity. It effectively restores the overall outline of the
entire land in all the four scenarios, but the brick structures
within the land are not distinct enough. Moreover, there are
noticeable artifacts in the recovered images, and the cloud
removal effect is not satisfactory, especially in scenes with
higher cloud coverage. However, our model can effectively
remove clouds in various scenarios and demonstrates greater
advantages in recovering fine-scale features of the land.

The quantitative results are presented in Table I. The results
of metric values are consistent with our previous visualization
analysis. McGAN exhibits a larger SAM value, indicating
significant spectral shifts and color distortions. In scenar-
ios with thick cloud cover, both McGAN and SpA GAN
exhibit substantial deviations from the ground-truth images,
resulting in notably lower SSIM values and higher MAE
values. Due to the presence of artifacts in the recovered
images, the performance of DSen2-CR in terms of PSNR and
SSIM is affected. Overall, our model exhibits clear superiority
in spectral recovery and texture reconstruction, with better
quantitative metrics compared with other methods. It is worth

TABLE II
QUANTITATIVE COMPARISONS OF DIFFERENT LOSSES

noting that different weather conditions and long time intervals
between the acquisition of cloudy optical data and cloud-free
optical data in SEN12MS-CR may lead to variations in color
and details between the corresponding images. This can poten-
tially affect the measurement of quantitative metrics.

D. Ablation Study

To examine the role of the SSIM loss function on image
restoration performance, we conduct experiments with the
LCARL loss used alone and the LCARL loss combined with the
LSSIM loss. Table II shows the results. The results indicate
that adding the LSSIM loss function can increase quantita-
tive metrics and improve cloud removal performance. It also
demonstrates that the multidata fusion method can reduce the
noise in the generated images and facilitate the subsequent
reconstruction.

IV. CONCLUSION

In this letter, we propose a novel cloud removal framework
that can preserve fine-grained edge structures in images.
To mitigate the adverse effects of speckle noise in SAR
images on image reconstruction, we fuse the SAR edge
maps with SAR and optical data as the new input for the
network. In addition, a custom loss function is introduced
to optimize the network for reconstructing images with clear
edge structures. The experimental results demonstrate that our
method produces clearer and more detailed images with better
quantitative indices.
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