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1 INTRODUCTION

Rapid development of hardware, software, and communication technologies boosts the speed of
connection of the physical world to the Internet via Internet of Things (IoT). A report! shows that
about 75.44 billion IoT devices will be connected to the Internet by 2025. These devices gener-
ate a massive amount of data with various modalities. Processing and analyzing such big data is
essential for developing smart IoT applications. Machine Learning (ML) plays a vital role in data in-
telligence that aims to understand and explore the real world. ML + IoT type applications thus are
experiencing explosive growth. However, there are unfilled gaps between current solutions and the
demands of orchestrating the development lifecycle of ML-based IoT applications. Existing orches-
tration frameworks, for example, Ubuntu Juju, Puppet, and Chef are flexible in providing solutions
for deploying and running applications over public or private clouds. These frameworks, however,
neglect the heterogeneity of IoT environments that encompasses various hardwares, communi-
cation protocols and operating systems. More importantly, none of them are able to completely
orchestrate a holistic development lifecycle of ML-based IoT applications. The development life-
cycle must cover the following factors: (1) how the target application is specified and developed,
(2) where the target application is deployed, (3) what kind of information the target application is
being audited. Application specification defines the requirements including the ML tasks, perfor-
mance, accuracy, and execution workflow. Based on the specification and the available computing
resources, the ML models are developed to meet the specified requirements while optimizing the
training processes in terms of the cost of time and computing resources. Next, the model deploy-
ment considers the difficulty of the heterogeneity of the IoT environment for running a set of
composed ML models. Finally, ML-based IoT applications closely connect with people’s lives and
some applications such as autopilot require high reliability. Therefore, essential monitoring infor-
mation has to be collected to improve the performance of the application in the next iteration of
the lifecycle.

In this survey, we present comprehensive research on orchestrating the development lifecycle
of ML-based IoT applications. We first present the core roadmap and taxonomy, and subsequently
summarize, compare, and assess the variety of techniques used in each step of the lifecycle. Pre-
vious efforts provided broad knowledge that can drive us to build the taxonomy. For instance,
Reference [260] discussed encountered challenges of developing the next generation of Al sys-
tems. References [197, 310] gave comprehensive reviews of available deep learning architectures
and algorithms in IoT domain. To the best of our knowledge, this is the first work that presents a
comprehensive survey to illustrate the whole development lifecycle of ML-based IoT application,
which paves the way for developing an agile, robust and reliable smart IoT application. Before
introducing the roadmap and taxonomy, we provide a smart city example in the next subsection
that illustrates ML-based IoT applications in the real world.

1.1 Smart City Applications

Smart city uses modern communication and information techniques to monitor, integrate, and
analyze the data collected from core systems running across cities. Meanwhile, smart city makes
intelligent responses to various use cases, such as traffic control, weather forecasting, industrial
and commercial activities. Figure 1 represents a smart city that consists of various IoT applications
with many of them using Machine Learning (ML) techniques. For example, a smart traffic routing
system consists of a large number of cameras monitoring the road traffic and a smart algorithm
running on the cloud recommending the optimal routes for users [321]. However, a smart car nav-
igation system [136] allows the passengers to set and change destinations via built-in car audio

Thttps://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/.
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Fig. 2. The development lifecycle of an ML-based loT application.

devices. The two systems work together to provide real-time interactive routing services. More
specifically, the user’s voice commands are translated in the car edge side and sent to the cloud
where the smart traffic routing system works. The best route is translated back to voice guiding
the users to their destinations. The above-mentioned applications involve various computing re-
sources (e.g., cloud, edge, and IoT devices) and ML techniques, making the development of these
ML-based IoT applications very challenging both for the ML models and the IoT system. To fill
this gap, we orchestrate the development lifecycle of an ML-based IoT application. In the next
subsection, we present a roadmap for the development lifecycle along with a comprehensive tax-
onomy that surveys the techniques relevant for developing the application.

1.2 Roadmap and Taxonomy

Roadmap. Figure 2 shows the roadmap of developing an ML-based IoT application. The roadmap
starts with the requirements specification where the required computing resources (hardware and
software) and ML models are specified. Based on the specification, we carefully design the infras-
tructure protocol, data acquisition approach, and machine learning model development pipeline.
Next, we implement and train the model with various ML algorithms. We also evaluate and opti-
mize the models to achieve high efficiency without sacrificing too much accuracy. After the model
development, an optimized deployment plan is generated based on the specified ML models and
infrastructures. The deployed application must be audited while it is running on real IoT environ-
ments; the audit aims to explore the performance issues in terms of security, reliability, and other
QoS metrics. Finally, the audited issues will guide the corrections of orchestration details in the
next iteration of the application development.

Taxonomy. Figure 4 depicts our taxonomy, which systematically analyzes the core components
in the orchestration of the development lifecycle of a ML-based IoT application. Note that the
survey in Reference [286] has reviewed cloud resource orchestration techniques. It outlines the
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key infrastructure orchestration challenges for cloud-based application as well as being extendable
for IoT applications. Thus, in this survey, we focus more on the challenges of implementing ML
models and orchestrating their IoT application development lifecycle. To this end, we extract the
core building blocks of the development lifecycle relevant to ML and identify four main categories
based on their specific functionality during the development process. The outline of the article
follows the structure of the taxonomy as well.

(1) Model Development. We propose a general pipeline for developing a ready-to-deploy
ML model. We investigate the ML techniques to build each block of the pipeline (refer to
Section 2).

(2) Model Deployment. In our work, we review the software deployment techniques and
analyze the challenges of applying such techniques to deploy the ML models in IoT envi-
ronments (refer to Section 3).

(3) Model Audit. Audit is one of the important dimensions in building a robust application.
We survey the main security, reliability, and performance issues in ML-based IoT applica-
tions (refer to Section 4).

(4) Data Acquisition. Data quality is important in building ML models. We identify three im-
portant dimensions throughout the data acquisition pipeline: data collection, data fusion,
and data preprocessing (refer to Section 5).

2 MODEL DEVELOPMENT

One of the core components in this article is machine learning (ML) models, which may be roughly
divided into three categories: Traditional Machine Learning (TML), Deep Learning (DL), and Re-
inforcement Learning (RL). To develop ML models in the IoT environment, we propose a generic
pipeline (see Figure 3), including model selection, model generation, model optimization, and model
evaluation, and we explain with adaptive video streaming [183] as an example.

Adaptive video streaming. Video transmission between server and mobile devices employs http-
based adaptive streaming techniques. In a typical video server (e.g., DASH?), videos are encoded
and stored as multiple chunks at different bitrates. One video usually consists of several chunks
with each containing seconds of content. To maximize video quality, the video player in a client
(e.g., mobile device) usually employs adaptive bitrate (ABR) algorithms aiming to pull high-bitrate
chunks from the server without compromising the latency. As shown in Figure 5, ABR algorithms
use simple heuristics to make bitrate decisions based on various observations such as the estimated
network throughput and playback buffer occupancy. ABR algorithms require fine-grained tuning
and can be hardly generalized to handle various network conditions that fluctuate across time and
different environments. Thus, we are seeking to solve the problem using modern ML technologies.

To this end, we first need to perform model selection (Section 2.1) to find a subset of suit-
able models. In this scenario, the server must give a bitrate decision so that the client can return
feedback that conveys whether the decision is satisfactory. Such interaction problems necessitate
further use of RL and we will present proper choice of RL algorithms based on different selection
criteria (Section 2.1.4). Next, we will choose a suitable development framework to implement the

Zhttps://github.com/Dash-Industry-Forum/dash.js.
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Fig. 5. Adaptive video streaming.

model and utilize different acceleration techniques to reduce the latency of model generation
(Section 2.2). In this example, Tensorflow and A3C algorithm [196] are used as the development
framework and distributed training protocol, respectively, for faster convergence. Once generated,
the model has to be adapted into the real environment. Considering heterogeneity of IoT infras-
tructure, models need to be optimized according to the computing resources. This procedure is
called model optimization (Section 2.3). In model evaluation (Section 2.4), model performance
is measured to validate whether the model meets expected results. Particularly in this case, perfor-
mance is evaluated by the total reward obtained from the simulated environment. The following
subsections will discuss the pipeline in detail.

2.1 Model Selection

Model selection aims to find the optimal ML model to perform user-specified tasks whilst adapting
to the complexity of IoT environments. In this section, we discuss the model selection from three
categories, i.e., TML, DL, and RL, and survey well-known models (or algorithms) in each category
along with their corresponding criteria for model selection.

2.1.1 TML vs. DL vs. RL. Compared with the most popular DL, TML is relatively lightweight.
It is a set of algorithms that directly transform the input data (to output), according to certain cri-
teria. For supervised cases when a class label is available for training, TML aims to map the input
data to the labels by optimising a model, which can be used to infer unseen data at the test stage.
However, since the relationship between raw data and label might be highly non-linear, feature
engineering—a heuristic trial-and-error process—is normally required to construct the appropri-
ate input feature. The TML model is relatively simple, the interpretability (e.g., the relationship
between the engineered features and the labels) tends to be high.

DL has become popular in recent years. With powerful capability for modelling complex non-
linear relationships (between the input and output), DL does not require the aforementioned
heuristic (and expensive) feature engineering process, making it a popular modelling approach
in many fields such as computer vision and natural language processing. Compared with TML, DL
models tend to have more parameters (to be estimated) and generally they require more data for
reliable representation learning. However, it is crucial to guarantee the data quality and a recent
empirical study [202] suggested the increasing number of noisy/less-representative training sam-
ples may harm DL’s performance, making it less generalizable to unseen test data. Moreover, DL’s
multilayer structures make it difficult to interpret the complex relationship between input (i.e.,
raw features) and output. However, more and more visualisation techniques (e.g., attention map
[313]) were used, which play an important role in understanding DL’s decision-making process.

RL has become increasingly popular due to its success in addressing challenging sequential
decision-making problems [265]. Some of these achievements are based on the combination of DL
and RL, i.e., Deep Reinforcement Learning. It has shown its considerable performance in natu-
ral language processing [163, 296], computer vision [9, 48, 230, 264, 305], robotics [221], and IoT
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Fig. 6. Reinforcement learning paradigm.

systems [182, 183, 320] and related applications like video games [9], visual tracking [230, 264,
305], action prediction [48], robotic grasping [221], question answering [296], dialogue genera-
tion [163], and so on. In RL, there is usually one or more agent(s) interacting with the outside
environment, where optimal control policies are learnt through experience. Figure 6 illustrates
the iterative interaction circle, where the agent starts without knowing anything about environ-
ment or task. Each time the agent takes action based on the environment states, and it receives a
reward from the environment. RL optimises this process such that it learns to make decisions with
higher rewards received.

Discussion. In IoT environments, a variety of problems can be modelled by using the aforemen-
tioned three approaches. The applications range from system and networking [182, 183], smart
city [164, 320], to smart grid [235, 290], and so on. To begin with modeling, it is essential for users
to choose a suitable learning concept at the first stage. The main selection criteria can be divided
into two categories: Function-based selection and Power Consumption-based selection.

Function-based selection aims to choose an appropriate concept based on their functional differ-
ence. For example, RL benefits from its iterative environment <> agent interaction property and
can be applied to various applications that need interaction with environment or system such as
smart temperature control systems, or recommendation systems (with cold start problem). How-
ever, TML algorithms are more suitable for modelling structured data (with high-level semantic
attributes), especially when interpretability is required. DL models are typically used to model
complex unstructured data, e.g., images, audios, time-series data, and so on, and are an ideal choice
especially with high amount of training data and low requirement on interpretability.

Power Consumption-based selection aims to choose an appropriate model given constraints in
computational power or latency. In contrast to TML, the powerful RL/DL models are normally
computationally expensive with high overhead. Model compression techniques were developed,
making RL/DL models for efficient some IoT applications. However, on some mobile platforms
with very limited hardware resources (e.g., power, memory, storage), it is still challenging to em-
ploy compressed RL/DL models, especially when there are some performance requirements (e.g.,
accuracy, or real-time inference) [51]. However, lightweight TML may be more efficient, yet rea-
sonable accuracy can only be achieved with appropriate features (e.g., high-level attributes derived
from the time-consuming feature engineering).

2.1.2  Traditional Machine Learning. Given different tasks, TML can be further divided into Su-
pervised Learning and Unsupervised Learning. Herein, we contrast two categories (algorithm details
are available in TML method Appendix B), and discuss the criteria for choosing the TML algo-
rithms.

Supervised Learning. Supervised learning algorithm (i.e., Figure 7) can be used when both the
input data X and the corresponding labels Y are provided (for training), and it aims to learn a
mapping function such that Y :«~ f(X). The most representative algorithms include Logistic Re-
gression (LR), Artificial Neural Networks (ANN), Decision Tree (DT) [222], Random Forest (RF) [36],
and Support Vector Machine (SVM) [63]. The TML algorithms are based on mathematics and statis-
tics modelling that give more interpretability for the model itself.

ACM Computing Surveys, Vol. 53, No. 4, Article 82. Publication date: August 2020.
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Fig. 7. Examples of supervised learning (linear regression) and unsupervised learning (clustering).

Unsupervised Learning. The unsupervised learning algorithm (see Figure 7, right) aims at learn-
ing the inherent relationship between the data when only input data X exists (without class label
Y). For example, the clustering algorithm can be used to find the potential patterns of some unla-
belled data and the obtained results can be used for future analysis. K-Means [116] and Principal
Component Analysis (PCA) [246] are the two most popular unsupervised learning algorithms. K-
means aims to find K group patterns from data by iteratively assigning each sample to different
clusters based on the distance between the sample and the centroid of each cluster. PCA is nor-
mally used for dimensionality reduction, which can de-correlate the raw features before selecting
the most informative ones.

Discussion. A common principle for IoT application is to select the algorithm with the highest
performance in terms of effectiveness and efficiency. One can run all related algorithms (e.g., su-
pervised, or unsupervised), before selecting the most appropriate one. For effectiveness, one has
to define the most suitable evaluation metrics, which can be task-dependent, e.g., accuracy or
mean-f1 score for classification tasks, or mean-squared errors for regression, and so on. Before
model selection, a number of factors should be taken into account: data structure (structured data,
or unstructured data that need extra preprocessing), data size (small or large), prior knowledge
(e.g., class distribution), data separability (linearly or non-linearly separable, which may require
additional feature engineering), dimensionality (low or high, which may require dimensionality
reduction), and so on. There may also exist additional requirements from the users/stakeholders,
e.g., interpretability for health diagnosis. Additionally, it is necessary to understand the efficiency
requirement specific to an IoT application and one has to consider how the training/testing time
grows with respect to data size. Time complexity shown in Table 2 in Appendix B provides more
insights. Take KNN as an example: although no training time is taken, KNN’s inference time can
be very high (especially with a large training set), and thus unsuitable for certain time-critical IoT
applications. Also, the deployment environment is another non-negligible factor when developing
IoT applications, since many applications run (or partially run) on low power computing resources.

2.1.3 Deep Learning. In this section, we primarily introduce three classical deep models (i.e.,
Deep Neural Networks (DNN)/Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN),
and Recurrent Neural Networks (RNN)) for supervised learning tasks on unstructured data such as
image, video, text, time-series data, and so on. We also brief two popular unsupervised models:
Autoencoder (AE) and Generative Adversarial Networks (GAN).

Supervised DL. We contrast the features of three basic supervised DL models: DNN, CNN, and
RNN.

Deep Neural Networks (DNN). As previously mentioned, a deep neural network (DNN) is an
ANN with more than one hidden layer, and hence it is also called multilayer perceptron (MLP).
Compared with ANNwith a single hidden layer, DNNhas more powerful modelling capabilities and
its deep structure makes it easier for it to learn higher-level semantic features, which is crucial for
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classification tasks on complex data. However, for high-dimensional unstructured input data (such
as images), there may be many model parameters to be estimated, and in this case, overfitting may
occur if there is not enough labelled data. Nevertheless, generally DNN has decent performance
when input dimensionality is not extremely high, and it has been successfully applied to various
applications, for example, human action recognition [274], traffic congestion prediction [75], and
healthcare [203].

Convolutional Neural Network (CNN). When it comes to high-dimensional unstructured data
such as images, in visual recognition tasks it is hard to directly map the raw image pixels into
target labels due to the complex non-linear relationship. The traditional way is to perform feature
engineering, which is normally a trial-and-error process, and may require domain knowledge in
certain circumstances, before TML is applied. This heuristic approach is normally time-consuming,
and there exist substantial recognition errors even in simple tasks, since it is very challenging to
hand-engineer the high-level semantic features. CNN, a deep neural network with convolutional
layers and pooling layers, can address this issue effectively. The convolution operation can extract
the higher level features while the pooling operation can keep the most informative responses
and reduce the dimensionality. Compared with DNN, the weight sharing concept (of the convo-
lution operation) enables CNN to capture the local pattern without suffering from the “curse of
high-dimensionality” from the input. These operations and the hierarchical nature make CNN a
powerful tool for extracting high-level semantic representations from raw image pixels directly,
and successfully applied to various recognition tasks such as object recognition, image segmenta-
tion [89], and object detection [117]. Because of the decent performance on various visual analysis
tasks, CNN is usually considered as the first choice for some camera-based IoT applications, for
example, traffic sign detection [248].

Recurrent Neural Networks (RNN). Nowadays, with the increasing amount of generated stream
and sequential data from various sensors, time series analysis has become popular among the
machine learning (ML) community. RNN is a sequential modelling technique that can effectively
combine the temporal information and current signal into the hidden units for time-series classi-
fication/prediction. An improved RNN named Long Short Term Memory (LSTM) [122], including
complex gates and memory cells within the hidden units for “better memories,” became popular
in various applications such as speech recognition [104], video analysis [273], language transla-
tion [177], activity recognition [108], and so on. Since data streaming is most common in the IoT
environment, RNN (LSTM) is deemed as one of the most powerful modelling techniques, and there
are various IoT applications such as smart assistant [91, 274], smart car navigator system [136],
malware threat hunting [111], network traffic forecasting [225], equipment condition forecast-
ing [315], energy demand prediction system [200], load forecasting [152], and so on.

Unsupervised DL. Two unsupervised DL models are hereby introduced: Autoencoder (AE) [15]
and Generative Adversarial Network (GAN) [100]. Without requiring any label information, AE
can extract compact features and reconstruct original (high-dimensional) data with the extracted
features. It is normally used for dimensionality reduction, latent distribution analysis or outlier
detection. GAN, however, applies an adversarial process to learn the “real” distribution from the
input data. More precisely, GAN consists of two parts, namely, generator and discriminator. The
generator aims at generating indistinguishable samples compared to the real data. While the dis-
criminator works adversarially to distinguish the generated fake samples from the real data. With
iterative competition process, GAN will eventually reach to a state where the generated samples
are indistinguishable from the real data. The learnt “real” distribution can be used to generate
samples for different purposes. Both AE and GAN are powerful and promising tools for computer
vision as well as IoT applications. AE can be used for diagnosis/fault detection tasks [57, 205] or
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simply as a preprocessing tool (i.e., feature extraction/dimensionality reduction). GAN has been
used for studies on generating rare category samples, and this upsampling approach may further
improve the model performance [318, 319].

Discussion. The aforementioned DL models can be effective tools for processing different un-
structured data types. The way of applying them is generally very flexible, and they can be used
jointly to process the complex data from various sources in the IoT environments. For example,
although CNN/RNN could be used in an end-to-end manner (e.g., as image/time-series classifiers),
they could also be used as feature extractors, based on which one can easily aggregate features
extracted from different sources (e.g., audio, images, sensor data). With high-dimensional video
data, one can either model by training CNN+ LSTM jointly [278], or use CNN/AE as feature extrac-
tors, before the sequential modelling (e.g., using LSTM). However, when modelling the data with
limited labels (e.g., rare event), one needs to consider the potential overfitting effect when using
DL directly. One may go back to the TML approaches or use some upsampling techniques (e.g.,
GAN ) to alleviate this effect.

2.1.4 Reinforcement Learning (RL). In this section, we first introduce the strategies used to for-
mulate the aforementioned video streaming example (see Section 2) with Reinforcement Learning
(RL). As mentioned earlier, in RL an agent interacts with the environment, learning an optimal
control policy through experience. It requires three key elements, observation, action, and reward.
Based on these, we can formulate the adaptive bitrate streaming problem. Specifically, observation
can be the buffer occupancy, network throughput, and so on. At each step, the agent decides the
bitrate of the next chunk. A reward (for example, the quality of service feedback from the user) is
received after the agent takes action (chunk bitrate). The algorithm proposed in Reference [183]
collects and generalizes the results of performing the past decisions and optimizes its policy from
different network conditions. This RL-based algorithm can also make the system robust to various
environmental noises such as unseen network conditions, video properties, and so on.

As shown in Figure 8, there is a plethora of algorithms in the whole reinforcement learning
family. More details of these RL algorithms can be found in the RL methods in Appendix B, and
here we focus on selecting appropriate RL algorithms based on different selection criteria.

Environment Modelling Cost: In RL modelling, sample efficiency is one of the major chal-
lenges. Normally the RL agent can interact either with the real world or a simulated environment
during training. However, it can be difficult to simulate the heterogeneous IoT environments and
complex IoT devices. RL models can also be trained directly in real-world IoT environments, yet
one major limitation is the heavy training cost, which may range from seconds to minutes for each
step. The model-based RL method, a method that can reduce the sample complexity, can decrease
the training time significantly. It first learns a predictive model of the real world, based on which
the decisions can be made. When compared with model-free approaches, model-based methods
are still in their infancy, and because of the efficiency property, they may attract more attention
in the near future.
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Action Space: The action space of RL algorithms can be either continuous or discrete. For
those RL algorithms with discrete action space, they choose from a finite number of actions at
runtime. Take the video streaming task, for example, the action space is different bitrates for each
chunk. Another task formulated in discrete action space can be found in Reference [182], where
the action space is the “schedule of the job at i-th slot.” Available algorithms for discrete action
space tasks most reside in the policy gradient group, for example, DQN and DDQN. The continuous
action space, however, is infinite for all possible actions. Relationships exist between the actions
that are usually sampled from certain distributions such as Gaussian distribution. For example,
in an energy-harvesting management system, PPO algorithm [238] is used to control IoT nodes
for power allocation. The action space, as stated in Reference [201], is sampled from a Gaussian
distribution to denote the load of each node ranging from 0% to 100%. Similarly, in another work [7]
that studied energy harvesting WSNs, the Actor-Critic [150] algorithm is implemented to control
the packet rate during transmission. One advantage of continuous action space lies in its ability
to accurately control the system, thus a higher QoF is expected.

2.2 Model Generation

Based on the user requirement and task specification, we have selected a variety of models. Next,
the models need to be developed and implemented. In this section, we will introduce the available
tools for the development. We will also present the approaches that can be utilized to accelerate
the training process.

2.2.1 Machine Learning Development Framework. The training and execution of ML models can
be tricky and it may require numerous engineering efforts. Efforts have been devoted to developing
frameworks to support the model development. These frameworks have their own strengths and
weaknesses in terms of the supported models, usability, scalability, and so on. In this section, we
will review several development frameworks.

For TML, the most famous development framework is Sci-kit learn. It is a free ML library with
Python interface. Sci-kit learn supports almost all main-stream machine learning models and is a
popular tool for fast prototyping. For DL, we list some of the most popular DL frameworks and
discuss their pros and cons in Table 1. Users can choose the most suitable frameworks based on
their needs.

When IoT comes into context, more challenges arise with edge computing as it is trying to move
the computation close where the data is generated [245]. The device heterogeneity of edge com-
puting has made the development of the DL models more complicated. There are many portable
Edge computing devices, each optimized with different inference engines. For example, Nvidia Jet-
son series GPU computing unit compiles models with TensorRT inference engine while Tensor-
Flow Lite is specially optimized for Google coral TPU. These inference engines optimize the model
graph and quantize the model parameters to lower precision, thus delivering low latency and high-
throughput for on-device inference. Some attempts [269] have been made to integrate both infer-
ence engines but the compatibility issue still exists. TVM [49] breaks the boundaries among diverse
hardware, aiming at cross-framework and cross-device end-to-end optimization of DL models.

2.2.2 Single Machine Learning (Centralized). Model training via single machine is a common
strategy for ML model generation. By placing the learning-related computation in the same place,
the model learns from the data and updates its parameters. In this subsection, we highlight two ap-
proaches that leverage hardware for the training process acceleration: Computation Optimization,
Algorithm Optmization.
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Table 1. Comparison of Deep Learning Frameworks
DL Core Interface Pros Cons

frameworks language
- Effective data visualization
- Distributed learning

Python, Javascript - Efficient model serving - Steep learning curve
Tensorflow (2) C++ Y ? Pt - On-device inference with low (migration from TF 1 to TF 2)
C++, Java, Go . .
latency for mobile devices - Poor results for speed
- Eager Execution with TF2, easy to
debug
- Simple and transparent modeling - Hard to serve even with
Pytorch C/Ce Python, C++ - Eager execution ONNX support
B . . - Limited community support
Caffe (2) C++ Python, C++ Fast, scalal')lez and' lightweight - Limited in implementing
- Server optimized inference
complex networks
- Fast, flexible, and efficient in terms
Python, C++, Java, of running DL algonthms - Smaller community compared
Mxnet C++ " X - Run on any device .
Julia, R, Perl, Clojure . . with Tensorflow or Pytorch
- Easy model serving - Highly
scalable
- Robust, flexible and effective - Robust, flexible and effective
DL4J Java Java, Clojure, Kotlin - Works with Apache Hadoop and - Works with Apache Hadoop

Spark and Spark

Computation Optimization. The basic computation unit of neural networks consists of vector-
vector, vector-matrix and matrix-matrix operations. Efficient implementation of computations can
accelerate the training and inference process. The Basic Linear Algebra Subprogram (BLAS) stan-
dardizes the building blocks for basic vector, matrix operations. A higher level linear algebra library
such as cuBLAS implements BLAS on top of NVIDIA CUDA and is efficient in utilizing the GPU
computation resource. Intel Math Kernel Library (MKL), however, maximizes performance on Intel
processors and is compatible with BLAS without the change of code.

Different DL architectures (e.g., DNNs, CNNs and RNNs) may require different optimizations
in terms of basic computations. The DNN computation is usually basic matrix-matrix multiplica-
tion and the aforementioned BLAS libraries can efficiently accelerate the computations with GPU
resources. The CNNs and RNNs are different in their convolution and recurrent computations.
Convolutions cannot fully utilize the multi-core processors and the acceleration can be achieved
by unrolling the convolution [45] to matrix-matrix computation or computing convolutions as
point-wise product [185]. For RNN (LSTM), the complex gate structures and consecutive recur-
rent layers differ from the DNNs and CNNs in that these computation units cannot be split and
deployed directly at different devices. This has made parallel computation difficult to apply. Opti-
mization is possible though, with implementations on top of NVIDIA cuDNN [52]. Computations
among the same gates can be grouped into larger matrix operations [8] and save intermediate
steps. We can also accelerate by caching RNN units’ weights with the GPU’s inverted memory
hierarchy [76]. The weights are reusable between time steps, making a maximum 30X speed up
on a TitanX GPU.

Algorithm Optimization. Apart from the resource utilization optimization, the algorithmic level
optimization is another important research direction for efficient model training and faster con-
vergence. Optimization algorithms aim at minimizing/maximizing a loss function that varies for
different machine learning tasks. They can be divided into two categories: First Order Optimization
and Second-order Optimization.

First-order Optimization methods minimizing/maximizing the loss function with the gradient
values with respect to the model parameters. Gradient Descent is one of the most important
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Fig. 9. Distributed machine learning pipeline.

algorithms for neural networks. After back-propagation from the loss function, the model pa-
rameters are updated towards the opposite direction of the gradient. Gradient descent approaches
fall into local optima when the absolute value is either too big or too small. Also, it updates the
gradient of the whole data set at one time, memory limitation is always a big problem. Variants
have been proposed to address the aforementioned problems, including Stochastic gradient de-
scent [32], mini-batch gradient descent [73]. Also, much famous research enables faster model
convergence: Momentum [218], AdaGrad [82], RMSProp [119], ADAM [148]. Second-order Opti-
mization methods take second-order derivative for minimizing/maximizing loss function. Com-
pared to the First-order Optimization, it consumes more computation power and is less popular for
machine learning model training. However, Second-order Optimization considers the surface cur-
vature performance and is less likely to get stuck on saddle points. Thus, it sometimes outperforms
the First-order Optimization. Famous Second-order Optimization methods include [12, 40, 118, 198,
206]. For more systematic survey on the optimization methods for machine learning training, one
can refer to Reference [33].

2.2.3 Distributed Machine Learning. Modern ML models such as neural networks require a sub-
stantial amount of data for the training process. These data are usually aggregated and stored in
the cloud server where training happens. However, when the training process of large volume
data outpaces the computing power of a single machine, we need to leverage multiple machines
available in the server cluster. This requires the development of novel distributed ML systems and
parallel training mechanisms that distribute and accelerate the machine learning workload.

Figure 9 shows the schematic diagram of a distributed ML pipeline. It has multiple components
that are engaged in Training Concurrency, Single Machine Optimization, and Distributed System. In
Training Concurrency, either the models or the data are split into small chunks and placed on differ-
ent devices. With Single Machine Optimization (which shares similar techniques as conventional
ML, see Section 2.2.2), which accelerates the training process, we get all local gradient updates.
Finally, Distributed System discusses strategies that efficiently aggregate the gradient updates.

Training Concurrency in Distributed ML. In the distributed machine learning, the selection
of parallel strategy depends on two factors: data size and model size. When either the datasets or
the model parameters are too big for single-machine processing, it is straightforward to consider
partitioning them into smaller chunks for processing at different places. Here, we first introduce
two basic methods data parallel, model parallel. We also introduce pipeline parallel and other hybrid
approaches that take advantage of both approaches.

Data Parallel. In a multi-core system where a single core cannot store all the data, data parallel is
considered by either splitting the data samples or the features. Data parallel has been successfully
applied to numerous machine learning algorithms [58] with each core working independently
on a subset of data. It can be used for training ML algorithm, for example, decision trees and
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other linear models where the features are relatively independent. Parallel with the split of data
features, though, it cannot be used directly with neural networks, because different dimensions of
the features are highly correlated.

In deep learning, data parallel works by distributing the training dataset across different GPU
units. The dominant data parallel approach is batch parallelism where mini-batch SGD is employed
to compute local gradient updates on a subset of the data. A central server is responsible for
aggregating all local updates to global parameter and pushing new models back to the working
units. One of the earliest works trained with GPUs can be found in Reference [224] where the
authors implemented distributed mini-batch SGD unsupervised learning concurrently with thou-
sands of threads in a single GPU. By varying the batch size [102, 255, 302], this method is effective
in reducing the communication cost without too much accuracy loss. In the next paragraph, we
will discuss more about the parallel SGD algorithms [187, 259, 304, 312, 325] for improving the
communication efficiency, which can be seen as one way of improving the performance of data
parallelism. Another type of data parallel that addresses the memory limit on single GPU is spatial
parallelism [141]. Spatial parallelism considers partitioning spatial tensors into smaller subdivi-
sions and allocating them to separate processing units. It thus differs from batch parallelism in
that the latter puts the groups of data in the same process. Spatial parallelism approach has proven
to show near linear speedup on modern multi-GPU systems.

Model Parallel. Data parallel suffers from the infeasibility of dealing with very large models es-
pecially when it exceeds the capacity of a single node. Model parallel addresses this problem by
splitting the model with only a subset of the whole model running on each node [35, 72, 147, 160].
The computation graphs can be divided within the layers (horizontal) or across the layers (vertical).
Mesh-tensorflow [244] allows linear within-layer scaling of model parameters across multiple de-
vices after compiling a computation graph into a SPMD program. However, this approach requires
high communication cost as it needs to split and combine model updates across a large number
of units. Reference [134] introduced decoupled parallel backpropagation to break the sequential
limitation of the back-propagation between the nodes, greatly increasing the training speed with-
out much accuracy loss. For CNN, as each layer can be specified as five dimensions including:
samples, height, width, channels, and filters, existing literature [79, 80] studies the split of models
among dimensions. Another research direction that optimizes the communication overhead is by
searching the optimal partition and device placement of computation graphs via reinforcement
learning [193]. The literature [140, 284] followed this idea and shows interest in automatic search
of optimal parallel strategies.

Pipeline Parallel. Although model parallel has proven successful in training extremely large mod-
els, the implementation is complicated due to the complexity of the neural network structure. This
is especially true for CNNs, since the convolution operators are highly correlated. Also, GPU uti-
lization is low for model parallel. Due to the gradient interdependence between different partitions,
usually only one GPU is in use each time. To solve the aforementioned problems, pipelining has
been studied [213, 293] for speeding up the model training. With pipeline parallel, models are par-
titioned and displayed across different GPUs. Then mini-batches of training data are injected to
the pipeline for concurrent processing of different inputs at the same time. Fewer worker GPUs are
idle in the pipeline parallel setting as each node is allocated jobs, without waiting for other nodes
to finish their work. According to the synchronization strategy we discussed earlier, gradients are
aggregated by either synchronous pipeline model (GPipe [132]) or asynchronous pipeline model
(PipeDream [115], SpecTrain [46], XPipe [107]). Theoretical analysis of pipeline parallel optimza-
tion has also been studied and with Pipeline Parallel Random Smoothing (PPRS) [60], convergence
rates can be further accelerated.
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Hybrid. Data and model parallel are not mutually exclusive. Hybrid approaches that combine the
benefits of both methods are effective in further accelerating the training process. Pipeline parallel
[115, 132] can be seen as an approach built on top of data parallel and model parallel. Apart from
that, Reference [154] proposed combining data parallel and model parallel for different types of
operators. With data parallel for CNN layers and model parallel for DNN layers, it achieved a 6.25%
speed up with only 1% of accuracy loss on eight GPUs. Another implementation MAPS-Multi [18]
borrows the idea of Reference [154] and automates the partitioning of workload among multiple
GPUs, achieving 3.12x speed up on four GTX 780 GPUs. Other forms of data parallel and model
parallel hybrids exist in the literature [53, 72, 95, 96] that reduce the overall communication and
computation overhead.

Distributed ML System. When we have acquired a local model update with partial data slice,
multi-node and multi-thread collaboration are important for effectively updating the model. Net-
work communication plays an important role in sharing the information across the nodes. In this
section, we present the three most important features in network communication: (1) network
topology, (2) synchronization strategy, and (3) communication efficiency.

Network Topology. The network topology defines the node connection approach in the dis-
tributed machine learning system. When the data and models are relatively simple, it is common
to utilize existing Message Passing Interface (MPI) or MapReduce infrastructure for the training.
Later when the systems are becoming more and more complex, new topologies should be designed
to facilitate the parameter update.

The Iterative MapReduce (IMR) or AllReduce approaches are commonly used for synchronous
data parallel training. Typical IMR engines (for example, the Spark MLIib [190]) generalizes MapRe-
duce and enables the iterative training required by most ML algorithms. Synchronous training can
also be implemented by AllReduce topology. MPI (Message Passing Interface) supports AllReduce
and is efficient for CPU-CPU communication. Many researchers implement their own version of
AllReduce, for example, Caffe2 Gloo, Baidu Ring AllReduce. In the ring-Allreduce topology, all
nodes connect to each other without a central server, just like a ring. The training gradients are
aggregated through their neighbors on the ring. To provide more efficient communication for
DL workload in the GPU cluster, libraries such as Nvidia NCCL [62] are developed and support
the AllReduce topology. In NCCL2 [138], the multi-node distribution feature is also introduced.
Horovod [240] replaces the Baidu ring-Allreduce backend with NCCL2 for efficient distribution.

A Parameter Server (PS) infrastructure [166] is usually composed of a set of worker nodes and
a server node, which gathers and distributes computation from worker nodes. As asynchronous
training of PS neglects stragglers, it provides better fault tolerance capability when some of the
nodes break down. Parameter server also features high scalability and flexibility. Users can add
nodes to the cluster without restarting the cluster. Famous projects such as DMTK Microsoft Mul-
tiverso [84], Petuum [295], and DistBelief [72] enable training of even larger networks.

Synchronization Strategy. In distributed ML, model parameter synchronization between worker
nodes is cost-extensive. The trade-off between the communication and the fresher updates has
great impact on the parallelism efficiency.

Bulk Synchronous Parallel (BSP) [186] is the simplest strategy for ensuring model consistency of
all worker nodes. For each training iteration, all nodes wait for the last (slowest) node to finish the
computation and the next iteration does not start before the all the model updates are aggregated.
Total Asynchronous Parallel (TAP) [72] approaches are proposed to address the problem of the
stragglers within the network. With TAP, all worker nodes access the global model via a shared
memory. They can pull and update global model parameters any time when the training is finished.
As there is no update barrier for this approach, the system fault tolerance is greatly improved.
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However, stale model updates cannot guarantee convergence to global optimum. Many famous
frameworks use the TAP strategy, including Hogwild! [229] and Cyclades [207].

Stale Synchronous Parallel (SSP) [121] compromises between fully-synchronous and asynchro-
nous schemes. It allows a maximum staleness by allowing faster working nodes to read global
parameters without waiting for slower nodes. As a result, the workers spend more time doing
valuable computation, thereby improving the training speed greatly. But when there is too much
staleness within the system, the convergence speed can be significantly reduced. Many state-of-
the-art distributed training systems implement BSP and SSP for efficient parallelism, for example,
tensorflow [1], Geeps [67], and Petuum [295].

In contrast to the SSP, which limits the staleness of the model update, the Approximate Syn-
chronous Parallel [127] (ASP) limits the correctness. In Gaia [127], for each local model updates,
the global parameter is aggregated only if the parameter change exceeds a predefined threshold.
This “significance” only strategy eliminates unnecessary model update and is efficient in utilizing
the limited bandwidth. However, the empirical determination of threshold only considers the net-
work traffic and is insufficient for dealing with dynamics in the IoT environment. Reference [285]
has addressed this problem by also considering resource constraints for efficient parallelism.

Communication Efficiency. Communication overhead is the key and often the bottleneck in
distributed machine learning [167]. The sequential optimization algorithms implemented in the
worker nodes require frequent read and write from the global shared parameters, which poses
great challenge on balancing network bandwidth and communication frequency. To increase the
communication efficiency, we can either reduce the size of the model gradient (communication
content) or the communication frequency.

Communication content. The gradient size between working nodes is correlated to both the
model size itself and the gradient compression rate. We have reviewed four types of model compres-
sion techniques in Section 2.3.2, which are effective in reducing the overall gradient size. Hereby,
we focus on the techniques that compress the gradient before transmission, discusses the gradient
quantization and sparsification.

Gradient quantization differs from the weight quantization (Section 2.3.2) as the former com-
presses the gradient transmission between worker nodes while the latter focuses on faster infer-
ence via smaller model size. Works that reduce the gradient precision [71] have been proposed
and 1-bit quantization [239, 261] is effective in greatly reducing the computation overhead. Based
on the idea, QSGD [6] and Terngrad [288] consider stochastic quantization where gradients are
randomly rounded to lower precision. Additionally, weight quantization and gradient quantization
can also be combined [125, 133, 292, 311, 323] for efficient on device acceleration.

The weights of the DNNs are usually sparse and due to the large number of unchanged weights
in each iteration, the gradient updates are even more sparse. This sparsification nature of the gradi-
ent transmission has been utilized for more efficient communication. Gradient sparsification works
by sending only important gradients when exceeding a fixed threshold [261] or adaptive threshold
[81]. Gradient Dropping [3] uses layer normalization to keep the convergence speed. DGC [171]
uses local gradient clipping for sending important gradients first while the less important ones are
aggregated with momentum correction for later transmission.

Communication Frequency. Local (Parallel) SGD [187, 259, 304, 312, 325] entails performing local
updates several times before parameter aggregation. Motivated by reducing the inter-node com-
munication, this approach is also called model averaging. One-shot averaging [187, 325] consid-
ers only one aggregation during the whole training process. While Reference [312] argues that
one-shot averaging can cause inaccuracy and proposes more frequent communications, many
works [170, 216, 303, 314] prove the applicability of the model averaging approach in various deep

ACM Computing Surveys, Vol. 53, No. 4, Article 82. Publication date: August 2020.



Orchestrating the Development Lifecycle of Machine Learning-based loT Applications 82:17

learning applications. In an asynchronous setting, the communication frequency can also be ma-
neuvered through the push and pull operations in the worker nodes. DistBelief [72] has adopted
this approach with a larger push interval compared to the pull interval.

2.24 Federated Learning. In traditional distributed machine learning, the training usually hap-
pens on the cloud data center with aggregated training data generated by collecting, labelling
and shuffling raw data. The training data is thus considered identical and independent distributed
(IID) and balanced. This facilitates the training process as one only needs to consider distributing
the training task across various computation units and updating the model by aggregating all lo-
cal gradient updates. However, this is not the case when IoT comes into play. The ML-based IoT
applications differ from the traditional ML applications in that they usually generate data from
heterogeneous geo-distributed devices (e.g., user behavior data from mobile phones). These data
can be privacy-sensitive as users usually prefer not to leak personal information, making conven-
tional distributed ML algorithms infeasible for solving such problems. Thus, novel optimziation
techniques are required to enable training in such scenarios.

Federated learning (FL) [151] is a type of distributed machine learning research that moves the
training close to the distributed IoT devices. It learns a global model by aggregating local gradient
updates and does not require the movement of the raw data to the cloud center. FederatedAv-
eraging (FedAvg) [188] is a decentralized learning algorithm specifically designed for the FL. It
implements synchronous local SGD [47] on each device with a global server averaging over a
fraction of all the model updates per iteration. FedAvg is capable of training high-accuracy models
on various datasets with many fewer communication rounds. Following this work, Reference [151]
proposed two approaches: Structured updates and sketched updates for reducing the communication
cost, achieving higher communication efficiency. Further research addresses the privacy limitation
of FL by Differential Privacy [189] and Secure Aggregation [30]. Finally, Reference [29] delivers
system-level implementation of FL based on previously mentioned techniques. It is able to train
deep learning models with local data stored on mobile phones.

FL is still developing rapidly with many challenges remaining to be solved. On the one hand,
FL shares similar challenges as in conventional distributed machine learning methods in terms of
more efficient communication protocol, synchronization strategy as well as parallel optimziation
algorithms. On the other hand, the distinct setting of FL requires more research preserving the
privacy of training data, ensuring the fairness and addressing bias in the data. For a more thorough
survey on details of FL, one can refer to Reference [144].

2.2.5 Knowledge Transfer Learning. The knowledge learnt from trained models can be trans-
ferred and adapt to new tasks. This is especially helpful in IoT environments where usually limited
data/labels are available. In this section, we introduce four types of knowledge transfer learning
(KTL) approaches: Transfer learning, Meta learning, Online learning, and Continual learning.

Transfer Learning [266]—transferring knowledge across datasets—is the most popular KTL
approach. It trains a model in the source domain (with adequate data/labels, e.g., on ImageNet [74]
for general visual recognition tasks), and fine-tunes the model parameters in the target domain
to accommodate the new tasks (e.g., medical imaging analysis on rare diseases). The rationale be-
hind is that low-level and mid-level features can be representative enough and thus shared across
different domains. In this case, only the parameters related to high-level feature extraction need
to be updated. This mechanism does not require a large amount of data annotation for learning
reliable representation in the new tasks, which could be useful in cases when annotations are
expensive (e.g., medical applications). Meta Learning [277] is another popular KTL approach;
instead of transferring knowledge across datasets, it focuses on knowledge transfer across tasks.
Meta learning means learning knowledge or patterns from a large number of tasks, then transfer
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this knowledge for more efficient learning of new tasks. When with continuous data streaming, it
is also desirable to update the model with incoming data, and in this case Online Learning [124]
can be used. However, it is difficult to model when the incoming data is from a different distribution
or a different task. Most recently, Continual Learning [210] was proposed to address this issue.
Not only can it accommodate the new tasks or data with unknown distribution, it can also main-
tain the performance on the old/historical tasks (i.e., no forgetting [145]), making it a practical tool
for real-world IoT applications. These four KTL approaches are similar in concept yet have differ-
ent use cases. Transfer/Meta learning are focused on knowledge transfer across datasets or tasks
(irrespective of data types), while online/continuous learning are more suitable for data streaming
and can transfer the knowledge continuously to the new incoming data or tasks.

2.2.6 Discussion. Effort has been devoted to implementing the distributed machine learning
on top of modern deep learning frameworks. Remarkable results have been achieved where with
proper implementation [102] with Tensorflow, the training time of the state-of-art ImageNet can
be reduced from days to one hour. Compared with Tensorflow, more efficient implementation such
as Horovod can increase the GPU utilization for even more acceleration. Horovod has already been
incorporated in various deep learning framework ecosystems (e.g., Pytorch, Mxnet).

Deep learning ecosystems free the researcher from heavy implementation effort. There are how-
ever, challenges for model generation in a distributed setting: (1) The choice of hardware. The same
implementation can have different performance on different devices. One would have to be aware
of the device features for efficient acceleration. (2) Parallel hyperparameter tuning strategy. Com-
pared with single machine training, the distributed system is more complex and it is thus more
difficult to find an optimal structure. (3) Effective work of DL frameworks with other big data appli-
cation like Hadoop/Spark. Existing big data frameworks (e.g., Spark/Hadoop) can also be applied
for effectively distributing the DL training pipeline, and a deeper integration of both frameworks
is urgently required.

2.3 Model Optimization

We have discussed the model selection and model generation where a model is generated catering
to the specific needs of IoT applications. There are, however, still things to be considered before
model deployment. The IoT application differs significantly from other areas in terms of deploy-
ment devices and data sources. The limited computational budget of edge devices requires smaller
models for small-scale computational workload to ensure low inference latency. Also, heteroge-
neous data sources in IoT environments usually contain redundant information that can even mis-
lead the decision of the ML models. It is important to select only relevant and informative features
or to perform model compression for performance optimization. In this section, we discuss these
two topics.

2.3.1 Feature Selection. The high-dimensional data in IoT environments poses challenges on
the training of the ML algorithms. Noisy and redundant signals exist and may consume substan-
tial computational power. Feature selection can help reducing the computational complexity, im-
prove the performance in terms of both effectiveness and efficiency—crucial factors in the limited-
resource IoT environments. Briefly, feature selection is the process of preserving relevant features
while discarding irrelevant/redundant features. There are generally three categories of feature se-
lection, namely, the Filter approach [16, 69, 112], the Wrapper approach [98, 110, 143, 184], and the
Embedded approach [37, 223].

For future research, one could extend the single-object optimization to multi-object optimiza-
tion. For example, in IoT systems, optimal feature selection algorithms assist the machine learning
models to optimize the execution time. We can explore the modifications of the feature selection
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algorithm to minimize the energy consumption of routing decisions as well [83]. One can also
study how to detect the dynamics within the data flow and then adaptively apply the search algo-
rithms accordingly to further improve the performance of the feature selection algorithms.

2.3.2 Model Efficiency. The state-of-the-art DL models often require high computational re-
sources beyond the capabilities of IoT devices. Models that perform well on large CPU and GPU
clusters may suffer from unacceptable inference latency or even be unable to run on edge devices
(e.g., Raspberry Pi). Tuning the deep neural network architectures to increase the efficiency with-
out sacrificing much accuracy has been an active research area. In this section, we cover three
main optimization directions: Efficient architecture design, Neural architecture search and Model
compression.

Efficient architecture design. There exist neural networks that can specifically match the re-
source and application constraints. They aim to explore highly efficient basic architecture spe-
cially designed for platforms such as mobiles, robots as well as other IoT devices. MobileNets
[126] is among the most famous works and proposed to use depth-wise separable convolutions
[250] to build CNN models. By controlling the network hyper-parameters, MobileNets can strike
an optimal balance between the accuracy and the constraints (e.g., computing resources). Later
in MobileNetv2 [237], the inverted residual with linear bottleneck architecture was introduced to
significantly reduce the operations and memory usage. Other important works include Xception
[56] ShuffleNet [317], ShuffleNetv2 [178], and CondenseNet [131]. These neural networks optimize
on-device inference performance via efficient design of building blocks, achieving much less com-
putational complexity while keeping or even raising accuracy on various computer vision datasets.
Some work even outperforms the neural architectures generated through exhaustive automatic
model search. Also, different building blocks can be combined together for even lighter models.

Neural architecture search (NAS). Another research direction named neural architecture search
aims at searching an optimal network structure in a predefined search space. There are usually
three types of algorithms: reinforcement learning approach [172, 214], Genetic Algorithm (GA)-
based [173, 228], and other algorithms [13, 39].

The models generated by these methods are normally constrained to smaller model sizes. Model
size and operation quality are the two most common metrics to be optimized, over other metrics
such as inference time or power consumption. Representative works, including MONAS [128],
DPP-Net [77], RENA [324], Pareto-NASH [85], and MnasNet [267], are interested in finding the
best model architectures to meet these constraints. These approaches are more straightforward
as they optimize directly over real-world performance. However, one drawback of NAS is the
extensive computing power required for finding the optimal neural architectures. Thus, the already
generated architectures can be utilized as guidance for future design for more efficient neural
network architecture.

Model Compression. As modern state-of-art DL models can be very large, reducing the model
computation cost is crucial for deploying the models on IoT devices, especially for those latency-
sensitive real-time applications. Model compression methods can be divided into four categories:
(1) Parameter pruning and sharing that removes the redundant parameters [64, 109, 227, 276].
(2) Low-rank factorization that decomposes the CNN or DNN tensors to lower ranks [159]. (3)
Transferred/compact convolutional filters that reduces the memory consumption by implementing
special structural convolutional filters [161, 243, 307]. (4) Knowledge distillation that learns a new,
more compact model that mimics the function presented by the original complex DL model [14,
120, 234, 306)].
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Table 2. Confusion Matrix for Classification

Actual Positive Class | Actual Negative Class
Predicted Positive Class True Positive (tp) False Negative (fn)
Predicted Negative Class | False Positive (fp) True Negative (tn)

Types of model compression techniques have their own strengths and weaknesses and thus
optimal choice is based on specific user requirements. Parameter pruning and sharing methods
are the most commonly applied techniques for compression models from original models. It is
stable as with proper tuning, this approach usually delivers no or few accuracy losses. However,
Transferred/compact convolutional filters methods address the compression from scratch. This end-
to-end efficient design for improving the CNN performance approach shares similar insights to
the efficient neural architecture design approach, as we discussed earlier. Knowledge distillation
methods are promising when working with relatively small datasets as the student model can
benefit from the teacher model with less data. All these methods are not mutually exclusive, we
can make combinations based on specific use cases to optimize the models that are more suitable
for low-resource IoT devices.

2.4 Model Evaluation

After the models have been trained, based on suitable metrics their performance should be evalu-
ated before deployment. Accuracy is one of the most popular evaluation metrics in classification
tasks, yet it faces several problems in different scenarios. For example, it is an overall measure with-
out indicating the recognition capability for each class, which may be heavily biased if there exists
a significant class imbalance problem. There are various evaluation metrics and it is key to select
the most appropriate one. For the rest of this section, we investigate several widely used metrics
for classification and regression tasks. For classification/regression tasks, one aims to construct a
model (i.e., f(-)) that can predict the value of dependent variable Y from independent variable X.
The difference between these two tasks is the fact that the dependent variable Y is numerical for
regression and categorical for classification.

2.4.1 Classification Problem-based Metric. In classification tasks, one of the most effective eval-
uation metrics is a confusion matrix [271]. As demonstrated in Table 2 for a binary classification
task, in a confusion matrix the row represents the predicted class and the column represents the
ground truth (actual class). The entries True Positive (tp) and True Negative (tn) represent the
correctly classified positive and negative samples, while the entries False Negative (fn) and False
Positive (fp) denote the misclassified positive and negative samples, respectively.

Based on the confusion matrix, several evaluation metrics can be derived. The accuracy (i.e.,
%) and error rate (i.e., % or 1 — accuracy) are the most commonly used met-
rics, because it is more understandable and intuitive for humans. However, these two metrics are
powerless in terms of class-wise informativeness [179], which may neglect the minority class [44]
(if there is a class imbalance problem).

The metrics precision and recall can be used to measure the performance irrespective of the class
imbalance problem (more definitions of classification evaluation metrics can be found in Table 4
in Appendix C). In binary classification problems, as mentioned earlier tp, fn, fp are defined
as the number of “positives correctly classified as positives,” “positives incorrectly classified as
negatives,” “negatives incorrectly classified as positives,” respectively. Then, we can see recall (i.e.,
%) indicates the ability of a classifier to detect (true) positives out of all positive instances,
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tp
T tptfp
Since the binary classification’s decision may highly depend on the threshold, there is a trade-off

between precision and recall. For example, if a high threshold has been chosen—the similarity
scores (the model outputs) have to be higher to give positive decisions—then the classifier tends to
have high fnandlow fp, yielding low recall and high precision. Similarly, reducing the value of the
threshold may increase recall and decrease precision accordingly. For different applications, one
needs to consider the optimal threshold for their requirements. For example, forensic applications
may prioritize high precision (i.e., low in fp) while a medical diagnosis may prioritize high recall
(i.e., low in fn).

while precision (i.e. ) is the percentage of detected (true) positives out of all the detected ones.

precision-recall )_
precision+recall
a measure that can balance the precision/recall trade-off—is normally used. It is worth noting that

for multi-class cases, the multi-class confusion matrix can be calculated, and the aforementioned
precision/recall/F1-score can be extended to measure the class-wise performance. Depending on
the data/applications, the overall performance can be measured by aggregating all the class-wise
metrics. Two popular aggregation operations are averaging, and weighted averaging, e.g., mean
F1-score, or weighted F1-score (over all the class-wise F1-scores).

In some tasks when both recall and precision are important, the FI-score (i.e., 2

2.4.2  Regression Problem-based Metric. For regression problems, the evaluation metrics are dif-
ferent from the classification ones. Popular evaluation metrics include Mean-squared Error (MSE),
Mean Absolute Error (MAE), Mean Percentage Error (MPE), and so on. Details and formulas of
these metrics can be found in Table 5 Appendix C.

Mean Absolute Error (MAE) and Mean-squared Error (MSE) are the simplest metrics for regression
evaluation. They denote the expected model errors defined in terms of absolute difference and
squared difference (between the predicted value and the ground truth), respectively. Alternatively,
the Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) can also be applied
to regression problems. The MAPE is similar to MAE but more intuitive as it shows percentage.
The MPE lacks the absolute term on MAPE, which means the positive and negative errors will
cancel out. In this case, the MPE cannot be directly used to measure the performance of a model.
However, it can be used to check whether the model systematically underestimates (more negative
errors) or overestimates (more positive errors).

All of the above metrics can be applied to the regression problem, but it is important to consider
the property of the dataset beforehand. For example, some fields may (or may not) be more prone
to outliers, and the corresponding (effective) evaluation metrics may be different.

3 MODEL DEPLOYMENT

When the ML model development process is finished, the developed models are to be deployed and
composed as an application in the complex IoT environments. To simplify the deployment, the ML
models and underlying infrastructure need to be specified (Section 3.1). Next, the optimization
techniques can be applied to generate the deployment plans that select the suitable ML models
for the deployment, optimizes the resource utilization of the model deployment and improve the
reusability of the deployed models (Section 3.2). Once the deployment plans are generated, the
models will be deployed over the specified infrastructure and the deployed models will be com-
posed as defined in the plan (Section 3.3).

3.1 Declarative Machine Learning and Deployment

Declarative ML. Declarative ML aims to use high-level language to specify ML tasks by sepa-
rating the applications from the underlying data representation, model training and computing
resources. There are three general properties of declarative ML. First, the high-level specification

ACM Computing Surveys, Vol. 53, No. 4, Article 82. Publication date: August 2020.



82:22 B. Qian et al.

only considers data types of input, intermediate results and output. They are exposed as abstract
data types without considering the physical representation of the data or how the data is pro-
cessed by the underlying ML models. Second, the ML tasks are specified as high-level operations
through well-defined semantics. The basic operation primitives and their expected accuracy lev-
els (or confidence interval) are defined accordingly. Based on the operation semantics, declarative
ML systems select the features and underlying ML models automatically or semi-automatically,
optimize the model performance and accuracy for varying data characteristics and runtime en-
vironments. Notably, the selection is based on the available models, provided as services. Finally,
the correctness of the ML models must be satisfied when a given model produces the equivalent
results in any computing resources with the same input data and configurations. As a result, the
declarative ML enables execution of the ML models over various hardware and computation plat-
forms (such as Apache Spark) without any changes. Besides, these specification languages also
bring flexibility and usability in the ML model deployment stage.

SystemML [28] is an implementation of declarative ML on Apache Spark. Through domain-
specific languages, it specifies the ML models as abstract data types and operations, independent
of implementation. The system is able to specify the majority of ML models: matrix factorizations,
dimension reduction, classification, descriptive statistics, clustering and regression. There is also
other state-of-the-art research on declarative ML, including TUPAQ [256] and Columbus [309].
They utilize language specification and modelling technologies to describe the ML models for au-
tomatic model and feature selection, performance and resource optimization, model and data reuse.

Declarative Deployment. Hardware in the IoT environment consists of three basic types of de-
vice: data generating devices, data processing devices and data transferring devices. Data generating
devices are also called “Things” (e.g., sensors, CCTV) and are used to collect environmental data.
Data transferring devices such as router, IoT gateway, base station are used to transfer the gen-
erated data to the data processing devices. Data processing devices are used to run the analytic
jobs. They can be GPU, CPU and TPU servers running in cloud or ARM-based edge device such
as Raspberry Pi and Arduino. An ML-based IoT application is usually running across a fully dis-
tributed environment, such that it requires correct specification of the component devices as well
as the precise interoperation between these devices. Reference [252] lists fundamental aspects that
may simplify the hardware specification, i.e., processor, clock rate, general purpose input/output
(GPIO), connectivity methods (Wi-Fi, Bluetooth, wired connection) and communication protocols
(serial peripheral interface), universal asynchronous receiver-transmitter (UART).

Regarding the software, it is often categorized into three groups based on operation levels: op-
erating system (OS), programming language and platform. IoT OS allows users to achieve the basic
behavior of a computer within internet-connected devices. The choice of OS in different layers
of the IoT environment depends on the hardware properties such as memory and CPU. The pro-
gramming language helps the developers to build various applications in different working envi-
ronments with diverse constraints. The choice depends on the capability of devices and the purpose
of the application [41]. The IoT software platform is a system that simplifies the development and
deployment of the ML-based IoT application. It is an essential element of a huge IoT ecosystem,
which can be leveraged to connect new elements to the system. For more details of the most popu-
lar OSs, programming languages and platforms in IoT domain, one can refer to Appendix A. The
ML development platforms have been discussed in Section 2.2.1.

The heterogeneity of IoT infrastructures makes the deployment very complicated and difficult to
automate. To overcome this issue, the infrastructure must be described and specified by machine
understandable languages. Then, the declarative deployment systems are able to automatically
map the ML models to the infrastructures and generate the deployment plans that optimize the
performance and the accuracy.
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The declarative TOSCA model [68] is able to specify the common infrastructures such as Rasp-
berry Pis and cloud VM (hardware), MQTT and XMPP (communication protocol). The deployment
logic can be defined through TOSCA Lifecycle Interface that allows users to customize the deploy-
ment steps. However, this declarative model is still very basic and cannot handle complex de-
ployments such as specifying the details of ML-based application. Moreover, the IoT applications
consist of installing devices and sensors that require human tasks. These tasks are not natively
supported by any available declarative deployment [38]. The imperative tool (e.g., kubectl com-
mands) allows the technical experts with diverse knowledge of different deployment systems and
APIs to interact with a deployment system and decide what actions should be taken. However,
current imperative frameworks such as Juju, Kubernetes still do not support interactions such
as sensor installation. In future, declarative deployment systems should interact with declarative
ML systems to deploy a complex application over the heterogeneity of IoT infrastructure while
supporting the human tasks through a more human centered imperative deployment model.

3.2 Deployment Optimization

When the infrastructures and deployment workflow of the ML models are specified, the deploy-
ment optimization problem can be formed as a mathematical expression subject to a set of system
constraints. Then, resource allocation algorithms can be used to efficiently and precisely find the
best solution for the given mathematical expressions. Moreover, the optimization objectives are a
set of QoS parameters including storage and memory, budget, task execution time and communi-
cation delay etc,. These algorithms can be divided into two classes based on whether an optimal
solution can be guaranteed: meta-heuristic method and iterative method (or mathematical optimiza-
tion). Nowadays, ML methods are becoming popular and being applied to solve these resource
allocation problems by learning “good” solutions from the data. We investigate the representative
works in resource allocation based on these three classes.

Iterative-based method. This class of algorithm generates a sequence of improved approximate
solutions with each driven by previous solutions. Eventually, the solutions will converge to an
optimal point proved by a rigorous mathematical analysis. The heuristic-based iterative methods
are also very common, categorized as meta-heuristic-based method. The most popular algorithms
of this class include newton’s method [180, 181], gradient method [17], and ellipsoid method [176].
To apply and adapt iterative-based algorithms to optimize resource allocation requires strong
mathematical background, which can be an obstruction for software developers to utilize these
algorithms to optimize their deployment. Furthermore, the algorithms perform for differently for
different problems in terms of efficiency and accuracy. As a result, more algorithms from iterative-
based methods need to be studied and simplified by the system researchers, providing toolkits (or
solvers) to tackle different optimization problems in IoT application deployment.

Meta-heuristic-based method. The optimization problems in IoT applications can have large
search spaces or be time-sensitive. The meta-heuristic-based method is faster than iterative-
based method in finding a near-optimal solution. This type of method consists of two subclasses:
trajectory-based method and population-based method. The trajectory-based method finds a suit-
able solution with a trajectory defined in the search space. First, the resource allocation prob-
lems are mapped into a set of search problems such as variable neighborhood search, iterated
local search, simulated annealing and tabu search. Then, the meta-heuristic algorithms are used
to find the solutions. Many survey papers [114, 174, 253] have reviewed the algorithms applied
for resource allocation in IoT, cloud computing, mobile computing. Additionally, population-based
methods aim to find a suitable solution in the search space described as the evolution of a popula-
tion of solutions. This method is also called evolutionary computation and the most well-known
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algorithm is the genetic algorithm. Reference [308] investigates the resource allocation problems
solved by evolutionary approaches in cloud computing.

Machine learning-based method. The ML-based method is inspired by the ability of data to rep-
resent the performance and utilization of the contemporary systems. The ML-based methods are
used to build data-driven models that allows the target systems to learn and generate an optimized
deployment plan. The proposed algorithms have been used to optimize various QoS parameters
such as latency [183, 299], resource utilization [194], energy consumption [21], and many others.
Zhang et al. [310] have given a comprehensive survey of the ML-based methods used for resource
allocation in mobile and wireless networking.

Deployment (or resource allocation) optimization problems have been studied for decades, and
remain a huge legacy for overcoming the optimization problems in deploying ML-based IoT ap-
plications. Instead of developing new optimization algorithms, more efforts are required to model
the complex optimization problems, in which the system scale, conditions and diversity have been
amplified significantly.

3.3 Action and Model Composition

Deployment of ML models in a pipeline requires proper model composition to maximize the user
QoS. As shown in Section 1.1, a smart car navigator system comprises multiple ML models, in-
cluding speech recognition, text classification, text generation, and text-to-speech (TTS) model.

Action composition is defined by composing a set of basic actions for complex decisions. In a self-
driving car operating system, actions can be accelerating, braking, turning left and right, and so on.
The combination of various action spaces increases the difficulties of learning optimal decisions in
such complex systems. Hierarchical abstract machines (HAM) [254] are well studied in the context
of reinforcement learning [211, 270] by allowing agents to select from a constrained list of action
spaces, speeding up the learning and adaptation to the new environment.

Model composition aims to create a ML-based IoT application by using reusable, portable, self-
contained modules via inserting new components or removing existing components. Apache Air-
flow is an open-source platform for creating, scheduling, and monitoring workflows in Python.
The Valohai operator is an extension of Airflow that utilizes the docker container to build self-
contained modules for each model while providing the flexibility for users to define the steps to
execute. Reference [146] reported the following challenges for chaining the ML models:

e How to allocate computing resources automatically for different models. An application is
chained by various ML models require different computing resources across heterogeneous
infrastructures. It is challenging to provision the computing resources efficiently for the
chained ML models while meeting their performance requirements.

e How to chain the dependent models. Each individual ML model has its own specification
and data format of the inputs and outputs. The challenge is to design a data messaging
system to orchestrate the data flow across different models while considering their required
specification and data format.

e How to meet the security requirements. The inferences are performed through various com-
ponents, with each deployed across different computing resources. This introduces a set of
challenges including privacy, verification of outputs of each model, changing the security
policies of components, and so on.

e How to monitor failure. The composed application consists of a set of ML models that needs
to be monitored, ensuring that everything is streamlined and executed as anticipated.
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Apart from challenges mentioned above, the literature discusses the techniques to improve the
performance of individual models via system configuration, including model batch size, model
replica, and system buffering.

Per-model Batch Size. Batching the received user queries optimizes throughput by fully utiliz-
ing the features of the pre-trained models, which is faster than processing one query at a time.
However, batching query can potentially increase latency, because the model will wait for a whole
batch of queries to come before it starts to proceed. The first query is not returned until the final
query is processed [65]. The choice of the per-model batch is challenging due to the sequential
composition between the models.

Model Replica. In heavy or bursting loads, a system must quickly respond to the query fluc-
tuations to meet the latency requirements. To alleviate the system congestion and achieve high
throughput, it is critical to identify the bottleneck, which can be challenging due to the system
dynamics. The bottleneck models can be resolved by replicating the model instances across multi-
ple devices [66], therefore balancing the workload. However, distributing the queries across more
model replica in a parallel setting [66] is also challenging, since the optimal placement depends on
the model performance and the device capacity.

System Buffering. Serving system as a stream processing system comprises components across
multiple devices. These devices usually process at different speeds, making system buffering across
nodes necessary. Message queues are usually implemented to ensure smooth running within the
system. However, buffering mechanism would increase the latency based on various system con-
figurations [66]. It is thus challenging to design proper strategies to balance the message queue
overhead and the system latency.

4 MODEL AUDIT

Audit aims to evaluate whether the application is operating effectively, safely, and reliably with
the collected evidence. To this end, we must know what we should audit. Most work focuses on
monitoring or debugging the issues caused by infrastructure failures [155], implementation bugs
[78, 153], and deployment errors [263]. In this section, we investigate the security, reliability, and
performance issues caused by ML models, especially DL models.

4.1 Security

There are many surveys regarding IoT security issues and challenges. The security of IoT standard-
ized communication protocols were evaluated in Reference [103] based on their proposed model.
Reference [249] categorized the security issues of IoT into eight domains including authentication,
access control, confidentiality, privacy, trust, secure middleware, mobile security, and policy en-
forcement. Reference [233] studied the main challenges and solutions of designing and deploying
security mechanisms in centralized and distributed IoT architectures. Reference [169] discussed
the security features of IoT and categorized the attacks into four layers, i.e., the perception layer,
the network layer, and the application layer.

In this subsection, we discuss security issues for deep learning-based IoT applications: Model
exploratory attack, Data poisoning attacks, and Evasion attacks. Model exploratory attacks do not
happen during training, instead the attacker tries to discover information from the trained model
including the model itself and training data. Data poisoning attacks happen during the training
phase, where the attacker attempts to shift the boundary of DL models in their favor by polluting
the training data. Finally, evasion attacks maliciously craft the inputs for the deep learning-based
IoT application to trigger abnormal model behavior. Interestingly, the development of the research
on adversarial learning has started an arms race between adversaries and defenders.
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The following subsection summarizes the most popular attacks (The defenses can be found in
Appendix D) of these attacks. We also propose research directions for development of robust IoT
applications.

4.1.1  Model Exploratory Attack. This type of attack is usually performed on open-source frame-
works such as PredictionIO and cloud-based machine learning service. This ML-as-a-service may
allow users to input partial feature vectors while still being able to receive confidence values in
addition to prediction results. Thus, the attacker can leverage this feature to either extract the
model or the sensitive information underlying the model. Model stealing and Membership leakage
are two main types of model exploratory attack. Model stealing attack aims to duplicate the func-
tionality of the model that allows the attacker to evade detection by the stolen model [10, 204].
Reference [272] proposed a method that learns the target models via a prediction APIL Evaluations
show that this method successfully extracts the models including logistic regression, SVM, neural
network and decision tree from BigML and Amazon Web Services. More attack methods can be
created based on the extensive literature on learning theory, e.g., PAC learning [275] and its vari-
ants [19]. Membership leakage attacks are interested in stealing the information from the training
data, which may not be publicly available and may contain some sensitive information such as
trade secrets, medical records, and so on. In this type of attack, an attacker is able to infer the
members of the population or the members of the training dataset. Attacking the members of the
population means that the types of data are used to create the model. Therefore, the target model
has not been generalized for the adversary, because he/she has the sample of the entire population
of the training dataset. The attacks were successfully performed in the dataset including voice,
handwritten images, network traffic, online shopping, record of hospital stays, and so on [10, 247].
The members of the training dataset attack aim to identify the individuals whose data are used for
training the model, which causes a serious privacy issue. For example, if an attacker knows that
a patient’s medical record was used to train a disease detection model, then it also reveals that
the patient has this disease. The experiments in Reference [272] show that the attacks are able to
extract the training dataset when the model is based on kernel logistic regression.

4.1.2  Data Poisoning Attack. Unlike model exploratory attack, an adversary performs the at-
tacks during the model training phase. These attacks insert carefully constructed poison instances
into the training dataset to manipulate the performance of a system. We introduce types of data
poisoning attacks both in traditional machine learning and deep learning.

Data poisoning attack in machine learning. (1) supervised learning. A causative attack was pro-
posed by Xiao et al. against SVMs, which utilizes label flipping to poison the training data [294].
A label flipping attack attempts to add a noise label to the training data. These flipping labels are
able to cause some malicious samples to be labeled as legal, or make legal samples appear to be
malicious. To improve the efficiency of the attack, Biggio and Laskov [23] utilized the gradient
descent algorithm to find the best attack points to flip the labels.

(2) unsupervised learning. The poisoning attack has been demonstrated against various cluster-
ing algorithms. The idea is to introduce carefully crafted data points to the training dataset to
cause clusters to merge. In References [24, 231], the authors assumed that the attacker has full
knowledge of the clustering algorithm and then reduced the attack to an optimization problem.
The evaluations show that the clustering algorithms are compromised significantly with a very
small percentage of poisoned input data.

Data poisoning attack in deep learning. There are very few data poisoning attacks in neural
networks. Reference [258] showed that a deep learning model lost 11% accuracy after modifying
3% training data. Moreover, if the attacks are focus on attacking the specific test instances, the
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Fig. 10. Arms race game between the attacker and the defender. The attacker takes an illegitimate example
(X) as the input of his/her neural network and generates an adversarial example (X”). This example attempts
to fool the defender, which is a classification neural network. If the classifier recognizes the adversarial
example as Y, which belongs to the legitimate input, then it means the attacker wins the game. On the
contrary, the defender wins the game if the adversarial example is classified as X. When the attacker fails, it
will try to update its model to generate a stronger adversary example based on the feedback. Similarly, the
defender will enhance its model based on the lesson learned from the successful attack.

successful rate, time consumption and required resources (the number of modified samples) can
be reduced significantly [50, 106, 258]. References [242, 262] targeted real-world scenarios where
the labels are examined by human reviewers and malware detectors. The authors aimed to overfit
the deep learning models by poisoning the training data. Thus, the target instants (trained models)
would not perform well during inference time.

4.1.3  Evasion Attack. With the explosive development of machine learning, evasion attacks are
becoming the most prevalent type of attack in machine learning, attracting people’s attention from
both academia and industry. Figure 10 shows the arms race between the attacker and defender. It
shows that the attacker attempts to confuse the defender with a crafted adversarial example, while
the defender aims to strengthen its ability to filter out illegitimate input.

During both training and inference, the attacker can generate adversarial examples by modifying
the samples. The training phase modification is similar to data poisoning attacksin that the decision
boundary of the defender classifier is modified by insertion, modification or deletion of the training
dataset. There are two approaches for generating adversarial samples, white-box or black-box. In
the white-box setup, the adversarial samples are crafted based on the attacker who has access
to both the training data and the targeted model. Therefore, an adversary is able to obtain the
boundaries of the targeted model by carefully modifying the training data. To be more explicit,
as shown in Figure 10, the defender aims to stop using the illegitimate input X to train the itself.
To fool the defender, the attacker attempts to learn the boundaries of the defender by adding the
perturbations to X and then performing the attack. This process is repeated until the adversarial
samples break the boundaries. The most representative techniques [101, 157, 209] are based on the
attacker who has knowledge of both target model and instance of data. In the black-box setup, the
attack introduced in Reference [208] is not aware of the training data and the targeted model. The
only observation of the targeted model is the inputs and their labels given by the targeted model.
Based on this, a local model is trained to replace the target DNN. Of the adversarial examples
generated by the local substitute model, 84% are misclassified by the targeted DNN.

4.1.4 The System Challenges of Building a Secure ML-based loT Application. Most of the attacks
and defenses reviewed in previous sections focus on developing the algorithms for functional tasks
such as computer version, natural language processing, audio speech processing, and so on. To
build a secure IoT application, we must consider the security issues from the system perspective,
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as the functional tasks cannot perform well when the system is under attack. We discuss two system
challenges to improve the security of ML-based IoT application.

Developing new attacking and defending models. ML has been widely used in IoT system
developments including network engineering [168, 183], resource allocation [162, 298], system
debugging [43, 251], network intrusion detection [149, 175, 280], and network operations [130].
These systems can be exposed to the aforementioned attacks as well. The literature [2, 87, 113]
has revealed successful examples of attacks and defenses. Further to the efforts on functional tasks,
more research and development (R&D) work is required to improve the security of ML-based IoT
applications.

Developing new security platforms/frameworks. We have discussed the arms race game be-
tween the attacker and defender (see Figure 10). This can be utilized to ensure the resilience of IoT
applications to various attacks. At a high level, an ideal platform would be able to launch various
attacks via a predefined deployment pipeline to attack the experimental group. Meanwhile, the
attack behaviors and system performance will be monitored to reinforce the capacity of the de-
fender. To this end, three research questions need to be answered. (1) How to automate the attacks.
Unlike the traditional software deployment problem, deploying attacks is much more complicated.
For example, in an evasion attack, the proposed platform must be able to use various ML models
to craft the adversarial examples. It is very difficult to automate this process. Due to the difference
between the model inputs and outputs, the models may need to be retrained based on the obser-
vation of the real world to generate better adversarial examples. (2) How to monitor the attacks. As
discussed in previous sections, attacks can happen in data collection, model training and model
inference. Therefore, the traditional log system is not able to handle this complexity. In a data
poisoning attack, for instance, the traditional log system is unable to capture the impact caused
by fake data points injection into the system, thus the training of a defender is unfeasible. (3) How
to coordinate the attacker with the defender. At the high level, the arms race game between the
attacker and the defender is very logical. The challenge here is to continuously select the suitable
attacks and thereby improve the defender’s performance. This can be formalized as an optimiza-
tion problem where one of the objective is to maximize the ability of a system in defending against
certain types of attack.

4.2 Fault Tolerance

Distributed system fault tolerance has been studied for decades. Many works have been proposed
to handle the failures including system architecture [226] and algorithm design [42]. In the IoT
environment, the probability of failure increases significantly with many faults hard to detect.
Our previous papers [94, 291] reviewed the state-of-the-art research and discussed key research
directions. In this subsection, we introduce some common faults in IoT-ML applications.

4.2.1 Faults in ML. Generalisation is crucial for ML models, which measure the prediction ca-
pacity on unseen test data [34]. Generally, ML training can be regarded as an optimisation process.
For example, the model can be trained by minimising a certain loss function. However, overfitting
may occur when ML models are trained on less representative, noisy or small data, and in this
case, trivial error patterns may be learned, causing lack of generalisation (i.e., faults) at the test
stage. There are many ways to reduce the overfitting effect, such as regularization (e.g., with reg-
ularization terms such as L1/L2 norm), Stochastic gradient descent (SGD) [31] or dropout [257] (for
DL models), early stopping [20] (stop training when validation error starts to increase), and so on.

Data imbalance may also cause overfitting. The model may mainly learn patterns from the ma-
jority classes while it may easily ignore the contributions from the minority classes (with lim-
ited training samples), yielding severe faults at the inference stage. Various approaches have been
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proposed for mitigation including data augmentation (e.g., Reference [281]), data upsampling (e.g.,
GAN-based data generation [268, 279]), cost-sensitive learning (which will impose a larger penalty
on training errors with minority classes), transfer learning, and so on.

In addition to overfitting effect, faults can also be attributed to the optimisation process. For ex-
ample, with very deep DL models or with RNN, gradient vanishing/explosion may occur during the
optimisation process, causing representation learning to be challenging or even infeasible. There
are also several approaches to address this issue, e.g., Batch Normalization (BN) [135] (through
normalizing the gradients in each layer), residual connection structure in DL (to preserve the gra-
dient across many layers). For federated learning or distributed learning, RSA (i.e., Byzantine-
Robust Stochastic Aggregation) [165] has also been proposed to prevent the incorrect gradient
aggregation.

4.2.2  Fault Tolerance in Neural Networks. At a high level of abstraction, neural networks can be
viewed as a distributed system. The failure can happen in neuron or synapse. In Reference [192],
Mhanmdi and Guerraoui proposed a general model to describe the fault model of neural networks.
The neuron may stop computing (Crash) or generate some abnormal outputs (Byzantine). Similarly,
the failures of synapse can be abstracted as Crash and Byzantine. Crash represents that the trans-
mission has not succeeded, and Byzantine is that the incorrect messages are sent from the source
neuron to the destination neuron. Thus, we assume that a given neural network N performs an
expected output Fy (X), and Fy,,,, (X) is the output of the faulty network obtained from N. The
distance € between Fy (X) and Fy,,,,, (X) represents the fault tolerance of ', when there are at
most n faulty components (including neuron and synapse):

|| FN(X) _FNfault(X) ”S €, (1)

where X is the training dataset, applied to both N and N 4y1:. To guarantee the robustness of the
neural model, the designer needs to ensure that the error (left-hand side in Equation (1)) is below a
predefined threshold (right-hand side in Equation (1)). The threshold depends on the performance
of the network and its intended application [192, 217].

Like that in distributed system, the fault tolerance in neural networks also has two types: Passive
and Active.

In passive fault tolerance, no diagnostics, relearning, or reconfiguration is required thereby
avoiding fault detection and location. The most common passive fault tolerance approach, which
is also one of the important features of neural network, is inserting redundancy. Such methods
learn a small network from the given input/output, and then add the replicated hidden neurons to
share the load of the critical nodes, after the model has been trained. Representative works [55, 59,
86] addressed the fault tolerance by adding extra links or nodes to the well trained neural network.
The authors in Reference [54] proposed a solution that adds artificial faults to the network during
the training time. Therefore, the network can tolerate the specific faults. However, this approach
requires that the neural network designers are aware of all the faulty scenarios while building the
network. Also, adding redundancies makes the models very complex and huge, which brings the
challenges of deploying them over lightweight and low-power IoT devices.

Active fault tolerance aims to recover the neural model from faults by resetting the neural
network into a fault-free state. However, it does not attract too much attention from research,
a common strategy is to utilize high-performance computation resources to re-compute the lost
work when the hardware fails [1, 287]. Notably, Qiao et al. proposed a checkpoint-based fault
tolerance for deep learning in Reference [219]. This new method partially recovers the model
from the checkpoints based on the priority of the checkpoints thereby significantly reducing the
cost of recomputing.
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4.3 Performance Evaluation

In this section, we consider several performance criteria that need to be considered for evaluating
the efficiency of the obtained ML models. The criteria is identified as two main dimensions: model
precision and execution latency.

Model Precision. In a typical IoT application, the software performance is assumed stable af-
ter deployment. However, this is not the case for ML application where precision degradation is
always expected after deployment. Precision degradation can happen as various unexpected ex-
ternal changes lead to shift in data distribution. Device location change, time and the weather are
all important factors that may decrease the model performance. Therefore, it is critical that the
model performance is monitored and new data is introduced continuously for retraining of the
model. In ML, we define lifelong learning [210] as continually acquiring data and extracting new
information without catastrophic forgetting of past knowledge. Lifelong learning keeps the model
precision at a steady level.

Execution Latency. Many IoT applications are latency-sensitive depending on their tasks. For
example, in the aforementioned smart transportation system (see Section 1.1) where sensors mon-
itor and detect car accidents, instant decisions have to be made to warn the drivers of potential
hazards. Various factors, listed below, have to be evaluated to ensure seamless communication
among the distributed components of a smart IoT application.

Bandwidth Usage. In distributed IoT networks, large scale IoT sensors are generating a huge
amount of data all the time. It is not possible to send all the data to the cloud for data analysis.
Fog computing proposed to move the computing close to the sensors to reduce the data transmis-
sion over the IoT network. However, the bandwidth of sensor network and edge network are still
limited, some nodes may experiences high latency due to the network congestion. This may cause
huge latency for the whole system as well. We need to monitor and evaluate this network dynamic
[182] to provide solutions to alleviate the congestion in the networks.

Resource Consumption. Hardware in IoT applications varies in computing power, memory
and storage capacity. For any resource-intensive tasks, for example, those computation-heavy or
memory-heavy ones, resource exhaustion in one node may lead to unacceptable latency for the
whole application. It is thus necessary to design efficient resource management systems [199, 301]
to monitor and optimize task allocation for these physical devices.

System Throughput. The ML-based IoT applications may be developed to serve millions of peo-
ple, for example, the smart traffic routing application mentioned in Section 1.1. This massive num-
ber of users may send the requests simultaneously. Responding to these requests quickly without
losing user satisfaction is still an unsolved problem in cloud computing. However, this issue is am-
plified in ML-based IoT applications, in which the queries may be performed on various devices
and models. Some database optimization techniques such as caching frequent queries, batching
queries and approximate computing are applied [66, 212]. There are remaining gaps in optimizing
the query plans by considering heterogeneousness of the computing resources, uncertainty of the
network, and diversity of ML models.

5 DATA ACQUISITION

Data is one of the most important constituents in developing a ML model as the prediction accuracy
of the model is highly correlated with the quality of the input data [195]. To provide high-quality
data for ML-based IoT applications, we orchestrate the data acquisition process into several steps.
First, raw data are collected from various data sources (Section 5.1). With proper preprocessing
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techniques (Section 5.2) to remove redundant information and annotate the data, we are capable
of performing several different ML tasks. While we have more data sources during the development
process, we can also fuse (Section 5.3) them to provide more consistent and useful information.
The following subsections will focus on the mentioned steps and discuss how data acquisition can
support development of a robust ML-based IoT application.

5.1 Data Collection

The IoT data can be broadly categorized into Structured data and Unstructured data based on its
representation. Structured data can be represented in a pre-defined format (rows and columns).
The meaning of each field is explicit, which eases the analysis and storage of the data. Examples
of structured data include employee register information, visiting logs, and so on. However, Un-
structured data lacks any specific structure or format. Varying from text, audio, video to mails and
messages, it accounts for a large proportion of IoT data. These two types of data are generated
in three formats: signal data, log data, and packet data. The signal data collects the daily life sig-
nal through various hardware such as sensors, sound recorders, cctv cameras, and so on. The log
data is usually used to capture the system status. Finally, the packet data is the data sent over the
network and each unit transmitted consists of a header and the actual data. To collect these data,
three important factors need to be considered: (1) Data exchange, (2) Resource consumption, and
(3) Concept Drift.

Data exchange. Data generated from IoT devices is sent to an edge (sink) node or other IoT
devices, eventually collected and stored in the cloud. The computation power of gateways and
edge nodes is improving, which brings an opportunity to remove data redundancy while saving the
energy and bandwidth required for transferring data to downstream nodes [289]. This aggregation
requires application of various data summarization techniques [61] including sampling, sketching,
histograms, wavelets and adaptation of these techniques to meet the constraints of the hardware
and the time-varying channel conditions. Henriette et al. [232] investigated the state-of-the-art
stream processing systems that can be used to implement these data summarization techniques
and execute them in a parallel and elastic manner. However, it still requires a lot of effort to develop
new data summarization techniques and stream processing systems to handle the difficulty of
processing high volumes data from various sources with multi-modality.

Resource consumption. As mentioned earlier, IoT devices are very limited by resources such
as processing capability, storage capacity, wireless bandwidth and battery power. Thus, it is very
critical to optimize the resource utilization while processing, storing or transferring data to the
edge device or cloud. To this end, we need to consider three issues: resource allocation, energy con-
trol and task allocation. Resource allocation in the context of data collection is to assign computing,
storage or bandwidth resources to the data generated by IoT devices before transferring to edge
or cloud. Sending streaming data drains the battery at a faster rate while limited storage capacity
does not enable large data storage. Energy control focuses on optimizing the energy consumption
when the IoT data is processed and transferred over the devices. Task allocation aims to balance the
resources consumption in IoT devices while minimizing the overall latency. These three factors are
sometimes considered together and most of the available algorithms are based on market-enabled
pricing schemes, which dynamically exchange the resources among the devices in 10T infrastruc-
ture by creating an artificial market [88, 139]. In ML-based IoT application, the ML models should
be considered as the special tasks that are running on extremely heterogeneous computing re-
sources in a distributed manner, and these tasks are usually compute-intensive, data-intensive and
network-intensive. As a result, it is crucial to develop new market models to describe these special
resource consumption problems and new algorithms to solve the problems.
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Concept Drift. Due to the dynamicity of the IoT environment, data distribution becomes very
uncertain and changes frequently over time leading to concept drift [93]. Changes can occur
abruptly or gradually correlated with the occurrence of other events. Additionally, the change
can be in different forms, i.e., input data characteristics or relation between input data and target
variables with single or multiple occurrence (constant or variable recurrence). For the successful
execution of IoT applications, these drifts need to be predicted, distinguished from noise and han-
dled properly. Numerous algorithms are proposed for managing concept drift. References [70, 129]
review the generic algorithms to handle the concept drift. There are two main detection methods,
performance-based and data distribution-based. The former can work well if the data is labeled,
which may not be possible for all cases while the latter is able to detect only a subset of available
drifts. Since IoT-based ML application data are not always labeled and high accuracy is desired, it
is essential to develop new algorithms that are able to detect and manage the concept drift.

5.2 Data Preprocessing

The real-world data collected from heterogeneous IoT devices usually contains outliers or is in-
complete in nature, which makes it difficult to feed it into ML models directly. Data preprocessing
deals with these anomalies and improves the data quality and practicality. There are several things
that need to be considered, namely, data cleaning, data annotation, and feature engineering. We have
discussed the details of feature engineering in Section 2.3.1, will not consider it in this section.

5.2.1 Data Cleaning. Much data contains noise that is bound to confuse the ML models and
reduce the accuracy of the prediction results. Data cleaning resolves this problem by completing
several routine tasks such as filling missing values, smoothing noise data, and removing outliers [5,
27]. Empty records in the data set can be replaced manually by a specific value, for example, the
attribute mean or the most common attribute in the set. It can also be marked with “unknown” or
just ignored if the dataset is large enough. Noisy data, though, can be smoothed by grouping first
and then averaging over each group. Data outliers can also be detected during this process if the
value exceeds a predefined threshold. There are other common practices such as data normaliza-
tion [220], which is used to scale dimensions of data to a specific range. This is very efficient when
there is high variation for different dimensions of the data.

5.2.2 Data Annotation. As discussed in Section 2.1, data annotation is necessary for supervised
learning-based ML models, in which both the data and the corresponding target act as the input
sample. The model is trained with the labeled data, which is used to predict the target for new
unseen data. This is usually costly and complex due to the requirement for a large volume of
labeled data needed for the training. The following investigates different annotation methods that
can be applied according to the size of the data to be annotated and the cost of annotation per data.

Manual Annotation: At the initial stage of a ML project, quick prototyping of a workable model
requires only few labeled data. In this sense, the developers can manually annotate the collected
data to create a small dataset. This is usually done by reviewing the data samples and attaching
labels following the annotation guidelines. Manual annotation by the engineers is quick and pre-
cise without any professional training, and the data quality is usually great. The problem with this
approach is the lack of scalability.

Crowdsourcing Annotation: Crowdsourcing annotation is a scalable and cost-effective method.
It is usually orchestrated by an online platform that provides access to a workforce of people
to complete the annotation tasks. Famous crowdsourcing platforms include Amazon Mechani-
cal Turk (MTurk). Compared to manual annotation, this approach can be scaled to large dataset
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labeling. However, the crowdsourcing method requires delicate design on quality control mecha-
nisms to ensure the annotation quality, and the incentives or rewards for the crowds.

Active Learning: Active learning [97, 241] aims to design a system capable of choosing and learn-
ing from less training data while still achieving the same or even higher accuracy. An active learn-
ing system consists of two components: a learning module that trains a model with the current
training sample and a sample selection module that selects the most informative samples from the
unlabeled samples. The selected samples will then be annotated manually and added to the train-
ing set. The iterative process continues until the training converges. The key here is the sample
selection module, which can be approximately subdivided into five categories, risk reduction, un-
certainty, diversity, density, and relevance according to the selection criteria [282]. These criteria
can be used either single-handedly (e.g., risk reduction [90], uncertainity [142], relevance [11]) or
in a combination. In Reference [283], uncertainty, diversity, density, and relevance are combined
for multi-modality video annotation. Similarly, work in Reference [123] combines uncertainty, di-
versity, and density metrics and the evaluation proves the combination performs well on medical
image classification tasks.

All the above explained methods work well for the case of static machine learning scenarios
with batch data available beforehand, However, this may not be suitable for IoT-specific streaming
data imminent with high concept drifts. In this case, the model needs to learn continuously with
the upcoming data. Since the new data does not have any label, multiple delayed learning concepts
[99, 105, 215] are proposed to handle the non-negligible delay in data labeling. These methods are
adequate for the scenario where labeling takes a constant time and latency is not a determining
factor. For IoT data with variable constant drifts, cleaning and labeling may not take uniform
time. Also, latency is one of the deciding factors for IoT-based ML applications. Thus, new sets of
methods are essential for data labeling, which considers the fluctuating IoT data with minimum
possible delay.

5.3 Data Fusion

Data fusion aims to combine the data from multiple sources to provide more accurate and useful
information. It offers numerous advantages for ML-based application by enhancing the data quality
(finding the missing values), detecting any anomalies, conducting the prediction and finding any
correlations among the distributed dataset [25, 158, 300]. However, there are multiple challenges in
combining heterogeneous IoT data [4] such as data frequency, data imperfection, data correlation,
data alignment and dynamic iterative process. To handle these challenges effectively, numerous
data fusion methods are available in the literature. It is mainly categorized into three groups as
given below.

5.3.1 Probabilistic Data Fusion Algorithms. This group consists of the algorithms that use den-
sity function or probability distributions as a core method for data fusion. It includes Bayesian
techniques [26], Markov models [156], evidential reasoning [297] , and other methods. These meth-
ods are simple and widely used in different applications to express the co-relation and dependency
between numerous datasets. However, there are certain drawbacks with probabilistic data fusion
methods highlighted in Reference [4]. First, it cannot scale with the size and modality of the data.
Second, uncertain and noisy data cannot be handled properly. Finally, prior probabilities and den-
sity functions are difficult to obtain.

5.3.2  Knowledge-based Data Fusion Algorithms. To overcome the uncertainty of data and in-
crease the accuracy of fusion methods, knowledge-based data fusion methods accumulates knowl-
edge from the imprecise big data and apply over the fusion process. Different aggregation
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techniques and ML methods are used for the data fusion process. For example, References [22,
191] (supervised learning method) and References [92, 316] (unsupervised learning method) are
used to discover the distribution of the complex datasets. However, the complexity of this type of
method is higher than the probabilistic methods. This class of method, thus, may consume more
computing resources and cost more time to process.

5.3.3 Evidence-based Data Fusion Algorithms. This group of methods is based on Demster-
Shafer Theorem (DST) and recursive operations. As compared to probabilistic methods, where
there are only two states (happening or non-happening) of an event, DST includes an unknown
state to capture real-world uncertainty. References [137, 236] are the applications of DST for data
fusion. However, increasing the data evidence also increases the complexity of this method. There-
fore, this method is not suitable for the applications running on less powerful computing resources.

5.4 Discussion

In this section, we reviewed core components in the data acquisition process and discussed how
they can contribute to generation of high-quality, ready-to-use data for IoT-ML application. Mul-
tiple research directions can be considered to leverage others’ efforts, thereby improving the per-
formance of ML model. (1) Data reuse: with the scaling of the data volume, past data is stored and
usually ignored after use. However, it can be reused and mined for more values. For example, it
can be used for boosting semi-supervised data annotation [322], or it can be integrated with newly
collected data for model training. (2) Data re-organization, there exist datasets for different tasks
in similar areas. They may not be the same, but can be re-organized to extract the common dis-
tributions. Proper identification and extraction can be explored to save effort on data collection.
(3) Feature evolution is also an important trait of streaming data as feature may appear and disap-
pear over time. If a feature appears and is found to be relevant, then it is necessary to incorporate
that for the learning process. In this case, disappearance of a feature can be considered as a drift
and the unavailability is treated as missing values. Ignoring this feature may lead to inaccurate pre-
diction. Taking the relevancy of feature evolution for different problem domains. Other challenges
that related to the unbalanced data have been discussed in Section 4.2.1 as well.

6 CONCLUSION

Growing numbers of internet-connected things (IoT) produce vast amounts of data, build appli-
cations, and provide various services in domains such as smart cities, energy, mobility, and smart
transportation. ML is becoming a preliminary technique for analyzing IoT data. It produces high-
level abstraction and insight that is fed to the IoT systems for fine-tuning and improvement of the
services. In this survey, we reviewed the characteristics of the IoT development lifecycle and the
role of ML for individual steps. Specifically, we divided the development lifecycles into different
modules and presented a novel taxonomy to characterize and analyze various techniques used to
build an ML-based IoT application. In summary, this survey seeks to provide systematic and in-
sightful information for researchers. It assists the development of future orchestration solutions by
providing a holistic view on the current status of ML-based IoT application development, deriving
key open research issues that were identified based on our critical review.
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