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In wearable-based human activity recognition (HAR) research, one of the major challenges is the large intra-class variability
problem. The collected activity signal is often, if not always, coupled with noises or bias caused by personal, environmental,
or other factors, making it difficult to learn effective features for HAR tasks, especially when with inadequate data. To address
this issue, in this work, we proposed a Behaviour Pattern Disentanglement (BPD) framework, which can disentangle the
behavior patterns from the irrelevant noises such as personal styles or environmental noises, etc. Based on a disentanglement
network, we designed several loss functions and used an adversarial training strategy for optimization, which can disentangle
activity signals from the irrelevant noises with the least dependency (between them) in the feature space. Our BPD framework
is flexible, and it can be used on top of existing deep learning (DL) approaches for feature refinement. Extensive experiments
were conducted on four public HAR datasets, and the promising results of our proposed BPD scheme suggest its flexibility
and effectiveness. This is an open-source project, and the code can be found at http://github.com/Jie-su/BPD
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1 INTRODUCTION
Wearable-based HAR is one of the most popular themes in ubiquitous and wearable computing, and it plays
a major role in a wide range of applications such as health assessment [8, 42], sleeps monitoring [57], sports
coaching [23], etc. The main tasks of wearable-based HAR involve partitioning the multi-variate data stream
from one or more sensors into segments and assigning a corresponding activity label to each segment [44].
Previous studies in this field leveraged the hand-crafted features in statistical (e.g., mean, variance) and

frequency (e.g., power spectral density) domain to represent segments of raw sensory streams and projected
the feature vector to the corresponding activity labels based on traditional machine learning methods such as
SVM [23], KNN [42] and Random Forest [39]. However, designing effective features tends to be a trial-and-error
process, and discriminant features may vary from task to task, making system-developing expensive and less

Authors’ addresses: Jie Su, Newcastle University, Newcastle Upon Tyne, United Kingdom, jieamsu@gmail.com; Zhenyu Wen, Zhejiang
University of Technology, Hangzhou, China, wenluke427@gmail.com; Tao Lin, EPFL, Lausanne, Switzerland, tao.lin@epfl.ch; Yu Guan,
Newcastle University, Newcastle Upon Tyne (Corresponding Author), United Kingdom, yu.guan@newcastle.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2474-9567/2022/3-ART28 $15.00
https://doi.org/10.1145/3517252

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 28. Publication date: March 2022.

HTTPS://ORCID.ORG/0000-0002-1427-1253
HTTPS://ORCID.ORG/0000-0002-2914-912X
HTTPS://ORCID.ORG/0000-0002-3246-6935
HTTPS://ORCID.ORG/0000-0002-1283-3806
https://doi.org/10.1145/3517252
https://doi.org/10.1145/3517252
https://orcid.org/0000-0002-1427-1253
https://orcid.org/0000-0002-2914-912X
https://orcid.org/0000-0002-3246-6935
https://orcid.org/0000-0002-1283-3806
https://doi.org/10.1145/3517252
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3517252&domain=pdf&date_stamp=2022-03-29


28:2 • Su et al.

Common pattern (     ) Redundant pattern (     )Activity Signal (     )

User 1

User 2

User 3

Fig. 1. Disentanglement factors in the feature representation for activity signal data: performing activity recognition over
the disentangled features (X) is much less challenging than that of raw sensor data (𝜆). The first column presents the raw
sensor data (𝜆) for the standing activity across different user groups. The second and third columns indicate the disentangled
common pattern (X) and redundant/irrelevant patterns (G) (e.g., gender, physical strength, etc.), respectively.

sustainable. To solve this problem, recent studies [13, 15, 35, 37, 56] leveraged the exceptional data representation
ability of deep learning methods to expedite feature extraction. Such studies mainly utilized the deep neural
networks (e.g., Convolutions neural networks(CNN) [28], Long-Short Term Memory(LSTM) [18]) to extract the
features from the original input sensors in an end-to-end manner.
Although the deep learning approaches can extract decent representation from input sensor data, they may

face challenges when dealing with multi-model sensor streams from diverse subjects/users. One of the crucial
challenges is the intra-class variability problem. The discrepancy between subjects in performing activities
was neglected in current studies - they usually map all subjects indiscriminately to the high-level feature
representations with Deep Learning methods. However, the sensor record for the same activity may vary among
different people due to their personal characteristics, such as gender, habits, physical strength, etc. Figure 1 shows
the sensor reading of the standing activity 𝜆 = X + G. X represents standing activity which is the common
pattern (distribution) across various groups of users. G are the redundant patterns which vary between different
group of users, even each independent user. Thus, such redundant patterns bring challenges for developing a
robust activity recognition system, serving million or billion of users. To overcome this, we can collect the new
sensor data and retrain the model to increase the generalisation ability. However, this solution is time-consuming
and it is very costly to label the new sensor data. Alternatively, removing or disentangling the redundant patterns
from the sensor data can significantly improve robustness and generalisation of activity recognition system.
Recently, learning disentangled representations has attracted a lot of attention from the machine learning

community. Such representations providemany advantages: improving the predictive performance on downstream
tasks [31, 32], reducing the sample complexity [48, 53], offering interpretability [17], improving fairness [30]
and have been identified as a way to overcome short cut learning in deep learning [9]. From the literature,
disentanglement learning approaches proved to be effective in the computer vision field. However, applying
disentanglement to sensor data (e.g., human activity recognition) is more challenging since the disentanglement
should consider both context level (e.g., time dimension) information and feature level information.
To address this issue, in this work we proposed a Behaviour Pattern Disentanglement (BPD) scheme, which

utilizes disentanglers to induce two groups of representations. Ideally, the activity features are captured as the
common patterns on a certain class of activity, and the redundant representations are captured as the unpredictable
personal patterns such as the lifestyle of a person. To effectively disentangle two groups of features, we develop an
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adversarial disentangle mechanism. By using such mechanism, the generated activity feature representations are
expected to be more invariant to other domains, compared to the original data. Moreover, our BPD framework is
flexible, and is applicable on top of existing popular DL approaches, such as CNN [56], DeepConvLSTM [37], etc.
for activity feature refinement. To evaluate our models, we leveraged the Leave-one-subject-out cross validation
(LOSO-CV) protocol on the four public HAR datasets, which can demonstrate the performance at both overall
and the subject-level. Our contributions can be summarised as follows:

• We proposed the BPD framework, which can separate the activity signal from the redundant feature in the
feature space with the least dependency.

• Our BPD scheme is flexible, and it can be used on top of existing DL approaches for feature refinement, with
improved HAR results. Our project is open source and the code can be found at http://github.com/Jie-su/BPD

• Extensive experiments were conducted, and we studied our BPD framework in details. The promising
results suggested its effectiveness.

The rest of this paper is organized as follow. Section 2 introduces the related background knowledge. Section 3&4
present the problem definition and the details of the proposed BPD framework. Section 5 gives the experimental
settings as well as evaluation results, and Section 6 concludes.

2 BACKGROUND
HAR has a long-standing history in the wider ubiquitous and wearable computing community. Recently, a
multitude of methods have been proposed and facilitate a variety of applications. HAR has become one of the
pillars of the third generation of computing [51]. In the following section, we will review the specific background
for this paper, which spans three main subject areas: i) Deep learning for HAR in ubiquitous and wearable
computing; ii) Adversarial Learning; iii) Representation Disentangle Learning.

2.1 Human Activity Recognition
Traditional machine learning[43] approaches such as K-Nearest Neighbor (KNN), Hidden Markov Model (HMM),
Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB) have been successfully applied on
HAR [2, 14, 27]. The main drawback of these models is that they are mainly relying on hand-crafted features or
heuristic information.

Deep learning methods can automatically extract features from raw signals, reducing the efforts on feature engi-
neering procedures. One of the most popular deep learning model is convolutional neural network (CNN), which
can extract the HAR representation by stacking multiple convolutional layers [56]. DeepConvLSTM [37] extended
CNN by adding LSTM layers for temporal information modelling. In [16], Hammerla et al. comprehensively
studied the performance of DNNs, CNNs and RNNs for HAR tasks. Guan and Ploetz [13] explored sample-wise
activity recognition by ensembles of deep LSTM learners using an epoch-wise bagging scheme. Murahari and
Ploetz [35] added the attention layers to the DeepConvLSTM model to learn local temporal context from raw
sensor data. Recent work [45] proposed a DDNN model to learn statistical, temporal and spatial correlation
features from signals, before a final fusion for performing the activity recognition.

2.2 Adversarial Learning
As deep neural networks have found their way from labs to the real world, the security and integrity of the
applications pose a great concern. Adversaries can craftily manipulate legitimate inputs, which may be impercep-
tible to the human eye, but can force a trained model to produce incorrect outputs [6]. Szegedy et al. [52] first
discovered that well-trained deep neural networks were susceptible to adversarial attacks. Attacks on autonomous
vehicles have been demonstrated by Kurakin et al. where the adversary manipulated traffic signs successfully
confuse the learning model.
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The Generative Adversarial Networks (GANs) were proposed by Goodfellow et al. [11] which brought the
concept of adversarial to the network level. More precisely, the key idea of GANs is to create a competition
between the generative model and an adversary: a discriminator model that learns to determine whether a
sample is from the model distribution or the data distribution [11]. Imagining the generative model as a team of
counterfeiters trying to produce fake currency that is non-detectable, while the discriminator as the police trying
to detect the counterfeit currency. Such competition drives both teams to improve their intelligence until the
counterfeits are indistinguishable from the genuine currency. Benefiting from GANs, the concept of adversarial
learning has become a popular research topic in the deep learning community and is applied to many applications
such as adversarial sample generation [55], style transfer [22], and autopilot [58].

2.3 Representation Disentangle Learning
Prior to the deep learning era, most computer vision systems made use of features that were hand-engineered
and task-oriented. One of the desired goals and challenges for these features was to be invariant to certain
nuisance/redundant factors in the data such as affine transforms, blur, etc. Early studies such as Gopalan et
al. [12] and Lowe [33] have achieved it, but the drawback of these methods is that they are mainly relying on
hand-crafted features. Recent advanced deep learning techniques are primarily data-driven where features are
learned by adding suitable constraints on the learning paradigm. Being dependent on data enables those methods
to learn covariate factors in the data (e.g., angle, shape, the noise in the data generating process). It should
be noted that the ‘noise’ can be any undesired and unknown factors of original data which we parameterise
with a mathematical model. Figure 1 illustrates the concept of covariate factors that might exist in the feature
representation of multi-dimensional signals (i.e., time-series signal). Specifically, it illustrates common activity
factor and personal/environmental factors for time-series data.

Disentangling those factors can help us to further explore the highly entangled high dimensional data, but the
factors might become the bias/noise to the recognition system. There are a few common kinds of nuisance/noise
factors that creep into the sensor signal datasets which can be used for training recognition systems: gender,
physical strength variation, age, etc. Here, the nuisance/noise factors can be defined as ‘task-based undesired
factors of variations’ since certain factors of variation are desirable for some tasks while not undesirable for
others. For example, gender could be a noise factor when doing activity classification but could be a key factor
for conditional signal sample generation (i.e., generate signal samples with gender condition). Thus, exploring
the disentanglement and disentangling desired representation/factors is crucial for many downstream machine
learning applications.

Benefiting from the advance of DL techniques, recent works [19–21, 29, 34, 36, 54] in computer vision started
to learn the interpretable representations from images or videos by utilising generative adversarial networks.
(GANs) [11] or Variational autoencoders(VAEs) [25]. InfoGAN [7] was proposed to learn the disentangled
representation in an unsupervised manner while it may suffer from training instabilities. Beta-VAE [17] improved
the poor disentanglement/reconstruction trade-off of the original VAEs. Later, Liu et al. [29] introduced a
unified feature disentanglement framework to learn domain invariant features across different domains. Recently,
disentangled representation learning has also been applied to some popular applications (e.g., Gait recognition [20],
speaker recognition [50]). Hu et al. [20] proposed a disentanglement framework that can separate gait identity
from the camera view for view-invariant gait recognition. DEAAN [50] was proposed to disentangle speaker-
related features from speech signals to achieve robust speaker adaptation and recognition. Recently, GILE [46] was
proposed by Qian et al. to disentangle ID information from raw sensor data. They utilised the additional subject
ID label and the Independence Excitation mechanism to disentangle the id information and activity information.
However, their design requires specific network design (complex network structure) and the additional meta
information, which might be less practical.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 28. Publication date: March 2022.



Learning Disentangled Behaviour Patterns for Wearable-based Human Activity Recognition • 28:5

E

R

Labels

𝐶

Cross Entropy

Cross Entropy

Max-Entropy

Task 
Classifier

Signal Feature

𝓏𝒔𝒊𝒈

Redundant Feature

𝓏𝒓𝒆𝒅

Initial 
Representation

𝑀

Labels

Input data

𝑀
Dependency 

Reduction 
Network

Optimisation
Criteria

Fig. 2. Structure of our proposed BPD framework, where (𝐸), (𝐷 , 𝐷 ′), (𝐶,𝐶 ′), (𝑅), (𝑀) represent Encoder, Disentanglers,
Classifiers, Reconstructor, Dependency Reduction Network, respectively.

3 PROBLEM DEFINITION
Recognising human activity with multi-modal data involves multiple devices attached to different parts of
the human body. Each device carries multiple sensors (e.g., 3-axis accelerometer, gyroscope, magnetometer).
Following the standard HAR procedure [5], we divide the multi-variate sensory streams into segments with a
fixed-size sliding window (detailed size information will be listed on experiment setting). Finally, given segment
training data {x𝑖 , 𝑦𝑖 }𝑁𝑖=1 where 𝑁 is the training sample number; x𝑖 and 𝑦𝑖 are the 𝑖th training example and label
with 𝑦𝑖 ∈ [1, 𝐾] and 𝐾 is the class number, the purpose of HAR is to learn a function F(𝑥, 𝛽) to infer the correct
activity label for the given segment data, where 𝛽 represents all the parameters to be learned during the training
process.

4 METHODOLOGY
For HAR, the collected sensor data often, if not always, includes other redundant features which can be subjects’
personal style, gender, age, weight, etc. Such redundant features or factors may cause large intra-activity variability,
making it challenging to learn discriminant behaviour patterns, especially when with inadequate data. In order
to remove or separate the redundant features from the activity signal, we introduce the Behaviour Pattern
Disentanglement (BPD) scheme, based on which the activity signal can be separated from the redundancy
features in the latent feature space.
Our proposed BPD scheme includes two key components as illustrated in Figure 2: (i) A Signal & Redundant

feature disentanglement network, which learns to disentangle the input features into activity signal and redundant
features; (ii) A Dependency Reduction Networks, which aims to reduce the correlations between the activity signal
and redundant features. These two blocks together with a feature reconstruction module maximises the effects of
feature disentanglement while ensuring the minimal information loss. The whole framework can be trained in
an end-to-end manner, and the disentanglement networks and the activity signal classifier will be used during
inference (i.e., activity classification).
In the following subsections, we will elaborate our design choices on Signal & Redundant Feature Disentan-

glement (Section 4.1), the Signal & Redundant Feature Dependency Reduction (Section 4.2) and the adversarial
training and optimisation process (Section 4.3).
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4.1 Signal & Redundant Feature Disentanglement
The activity pattern of different users is often associated with users’ own personal information, like gender,
age and other factors. However, these personalised attributes hinder the representation learning for the later
classification. To this end, we propose to utilise a more general and robust feature representation with less
irrelevant user information to alleviate the classification difficulty across different users, so as to further improve
the generalisation ability of the HAR models. In the following section, we refer to the aforementioned robust
feature representation and irrelevant user information as “activity features” z𝑠𝑖𝑔 and “redundant features” z𝑟𝑒𝑑
respectively.
We leverage the idea from the generative adversarial network and introduce the concept of adversarial

disentanglement to remove/disentangle the redundant features from the activity features. We feed the learnt
features to disentanglers 𝐷 and 𝐷 ′ to decompose the features representation retrieved from the encoder 𝐸. The
representation extracted from disentangler 𝐷 will be supervised by the corresponding activity labels in the
classifier 𝐶 to ensure the activity classification ability, while a two-player game happens in the classifier 𝐶 ′

and its’ adversary disentangler 𝐷 ′ so as to generate irrelevant representations. Note that the classifier 𝐶 ′ aims
to map the representations to the correct activity labels while the 𝐷 ′ on the contrary generates the irrelevant
representations to fool the classifier𝐶 ′. To guard the representation integrity of the disentangled features from 𝐷

and 𝐷 ′, we add a feature reconstructor 𝑅 to recover the initial feature representation.
The proposed BPD framework trains the aforementioned encoder (𝐸), disentanglers (𝐷 and 𝐷 ′) and classifiers

(𝐶 and 𝐶 ′) in an alternative way. More precisely, two disentanglers 𝐷 and 𝐷 ′ along with two 𝐾-way classifiers
(i.e., 𝐶 and 𝐶 ′) will be first trained by minimising the cross-entropy loss in Eq. (1):

L𝑐𝑒
𝜃𝐸,𝐷,𝐷′,𝐶,𝐶′

= − 1
𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

1[𝑦𝑖 = 𝑘] log(𝐶 (z𝑖𝑠𝑖𝑔)) −
1
𝑁

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

1[𝑦𝑖 = 𝑘] log(𝐶 ′(z𝑖
𝑟𝑒𝑑

)) . (1)

where z𝑖𝑠𝑖𝑔 = 𝐷 (𝐸 (x𝑖 )) and z𝑖
𝑟𝑒𝑑

= 𝐷 ′(𝐸 (x𝑖 )).
Then, to produce features with less discriminative information, or equivalently, increasing the uncertainty

of classification, we minimise the negative entropy on the feature extracted by disentangler 𝐷 ′. The negative
entropy function can be written as:

L𝑛𝑒
𝜃𝐸,𝐷′

= − 1
𝑁

𝑁∑︁
𝑖=1

log𝐶 ′(z𝑖
𝑟𝑒𝑑

) , (2)

and the parameter of classifiers is fixed when optimising Eq. (2).
To ensure the integrity of the feature representation, that is, the disentangled activity and redundant features

can be reconstructed back to the initial representation, we forward the features z𝑠𝑖𝑔 and z𝑟𝑒𝑑 that are extracted
from disentanglers to the reconstructor 𝑅 and optimise it simultaneously with the negative entropy minimisation
(Eq. (2)). To achieve the effects of reconstruction, we utilise the L2 loss function to constrain the equivalence
between reconstructed features and initial features. Such constraint can be written as:

L𝑟𝑒𝑐𝑜𝑛
𝜃𝐷,𝐷′,𝑅

=
1
𝑁

𝑁∑︁
𝑖=1

𝐸 (x𝑖 ) − 𝑅(z𝑖𝑠𝑖𝑔, z𝑖𝑟𝑒𝑑 ) , (3)

where 𝐸 (𝑥𝑖 ) is the initial representation. Note, the activity feature z𝑠𝑖𝑔 and redundant feature z𝑟𝑒𝑑 will be fed into
the reconstructor with a concatenation operation, which means only one concatenated feature will be forwarded
into reconstructor.
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4.2 Signal & Redundant Feature Dependency Reduction
The previous section presents the disentanglement scheme of the activity and redundant features. To ensure
less correlated/dependent disentangled features for a good disentanglement learning, we leverage the mutual
information—a measure of non-linear dependencies between variables (e.g. learned feature representation) [26,
38, 49]—to reduce the mutual information between the activity signal z𝑠𝑖𝑔 and redundant features z𝑟𝑒𝑑 , so as to
reduce the dependence of between them.

Here, the mutual information between the activity features z𝑠𝑖𝑔 and redundant features z𝑟𝑒𝑑 can be defined as:

𝐼 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 ) =
∫
z𝑠𝑖𝑔

∫
z𝑟𝑒𝑑

log
𝑃 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 )
𝑃 (z𝑠𝑖𝑔)𝑃 (z𝑟𝑒𝑑 )

𝑑z𝑠𝑖𝑔𝑑z𝑟𝑒𝑑 , (4)

where 𝑃 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 ) is the joint probability density distribution (pdf); 𝑃 (z𝑠𝑖𝑔) and 𝑃 (z𝑟𝑒𝑑 ) are marginal pdfs.
𝐼 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 ) measures the dependency between the two features, and minimising 𝐼 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 ) may further push
these two features apart in the feature space.

Despite being a pivotal measure across different domains, the mutual information is only tractable for discrete
variables, or for a limited family of problems where the probability distributions are unknown [4]. Following
[4], we adopt Mutual Information Neural Estimator (MINE) as an unbiased estimation of mutual information
on i.i.d samples through a neural network𝑀𝜃 (as shown in Figure 2). Specifically, we leverage the lower-bound
calculation from [4] to formulate the loss function as follows:

L𝑀𝐼𝑁𝐸
𝜃𝐷,𝐷′,𝑀

= 𝐼 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 ) =
1
𝑛

𝑛∑︁
𝑖=1

𝑀 (z𝑖𝑠𝑖𝑔, z𝑖𝑟𝑒𝑑 , 𝜃 ) − 𝑙𝑜𝑔(
1
𝑛

𝑛∑︁
𝑖=1

𝑒
𝑀 (z𝑖

𝑠𝑖𝑔
,ẑ𝑖
𝑟𝑒𝑑

,𝜃 ) ) , (5)

where {z𝑖𝑠𝑖𝑔, z𝑖𝑟𝑒𝑑 }
𝑛
𝑖=1 are 𝑛 pairs sampled from the joint distribution 𝑃 (z𝑠𝑖𝑔, z𝑟𝑒𝑑 ); ẑ𝑖𝑟𝑒𝑑 is sampled from the marginal

distribution 𝑃 (z𝑟𝑒𝑑 ), and𝑀 (z𝑖𝑠𝑖𝑔, z𝑖𝑟𝑒𝑑 , 𝜃 ) is a neural network parameterised by 𝜃 to estimate the mutual information
between two distributions. Model parameters of the disentanglers (𝐷 and 𝐷 ′) as well as the dependency reduction
network𝑀 will be updated by minimising Eq.(5).

4.3 Algorithm & Implementation
For our BPD structure, we implement the components as follows: 1) Encoder (𝐸): CNN[56] or DeepConvLSTM[37]
with the same network structure as original works; 2) Disentanglers (𝐷 and 𝐷 ′): Single fully-connected layer
with a batch normalisation layer; 3) Reconstructor (𝑅): single fully-connected layer. 4) Dependency Reduction
Network (𝑀): two fully-connected layers. 5) Classifiers (𝐶 and 𝐶 ′): two fully-connected layers and a dropout
function. To ensure the learned consistent representation space can lead to accurate activity classification, we
jointly minimise the activity classification error (Classifier 𝐶) and conduct adversarial training.
The training strategy of our BPD framework is detailed in Algorithm 1. More precisely, on the training

stage, given data from training users, with selected Encoder 𝐸 (e.g., CNN, ConvLSTM), the BPD framework is
optimised in an end-to-end manner using Algorithm 1. At the inference stage, given trained components 𝐸 (CNN
or ConvLSTM), 𝐶 (Classifier), 𝐷 (Disentangler) from Algorithm 1, for any query data x from any unseen user,
classification can be performed by inputting the disentangled activity features to the classifier 𝐶 . Specifically, the
label is assigned to 𝑦 such that:

𝑦 = argmax
[1,𝐾 ]

𝐶 (z𝑠𝑖𝑔), where z𝑠𝑖𝑔 = 𝐷 (𝐸 (x)). (6)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 28. Publication date: March 2022.



28:8 • Su et al.

Algorithm 1: Training Strategy of the BPD framework
Input :Training data {x𝑖 , 𝑦𝑖 }𝑁𝑖=1, Encoder 𝐸, Disentanglers (𝐷 and 𝐷 ′); Classifiers (𝐶 and 𝐶 ′); Dependency

Reduction Network𝑀 , and Reconstructor 𝑅;
Result: Trained Encoder 𝐸, trained disentangler 𝐷 and trained classifier 𝐶
Initialisation;
for j=1 : maxEpoch do

if not converged then
Sampling training mini-batch data from {x𝑖 , 𝑦𝑖 }𝑁𝑖=1;
Signal&Noise Disentanglement:
Updating 𝐸, 𝐷, 𝐷 ′,𝐶,𝐶 ′ by minimising Eq. (1);
Updating 𝐸, 𝐷 ′ by minimising Eq. (2);
Signal&Noise Dependency Reduction:
Updating 𝐷, 𝐷 ′, 𝑀 by minimising Eq. (5) ;
Reconstruction:
Updating 𝐷, 𝐷 ′, 𝑅 by minimising Eq. (3) ;
𝑗 = 𝑗 + 1 ;

else
break;

end
end
return Trained 𝐸; trained 𝐶; trained 𝐷

5 EXPERIMENT

5.1 Datasets
To evaluate the effectiveness of our BPD framework, we perform it on four public datasets: PAMAP2 [47],
MHEALTH [1], DSADS [3] and GOTOV [40].

Table 1. Description of the four public HAR datasets used in our study; #Dim represents the dimension of the input data.

Dataset #Subject #Activity Frequency #Sample #Dim Wearing Position

PAMAP2 8 12 100Hz 2.84M 52 Wrist,Chest,Ankle
MHEALTH 10 12 50Hz 0.34M 23 Chest,Ankle,Arm
DSADS 8 19 25Hz 1.14M 45 Tarso, Right/Left Arm, Right/Left Leg
GOTOV 35 16 83HZ 5.9M 3 Wrist

Physical Activity Monitoring (PAMAP2) [47] dataset includes data recorded from 9 subjects performing 18
different activities, such as vacuum cleaning, ironing, rope jumping, etc. The data were collected with three IMUs
placed on the subject’s chest, dominant wrist, and dominant ankle, respectively. In our study, 12 activities were
selected (as shown in Fig. 3), and all the IMU data channels (i.e., 52 dimensions) from 8 subjects were used.

Mobile Health (MHEALTH) [1] dataset contains body motion and vital signs recording for 10 subjects of diverse
profiles while performing 12 activities in an out-of-lab environment with no constraints. The total dimension of
the input data is 23, which include the data recorded by inertial measurement units (IMUs) that are placed on the
subject’s chest, right wrist and left ankle. The IMUs collect a 3-axis acceleration, a 3-axis gyroscope and a 3-axis
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magnetic field of motion, respectively. Also, the IMUs positioned on the chest provides 2-lead ECG measurement,
which can be used for basic heart monitoring.

Daily and Sports Activities Data Set (DSADS) [3] dataset contains motion sensor data of 19 daily and sports
activities performed by 8 subjects. Each activity was performed for 5 minutes in their style without constraints. 5
IMUs were positioned on the torso, right arm, left arm, right leg and left leg with 9 sensors on each unit (3-axis
accelerometers, 3-axis gyroscopes, and 3-axis magnetometers) which produces 45-dimensional sensor data.
Growing Old Together Validation (GOTOV) [40] dataset contains 16 daily activities sensor data of 35 elder

participants (21 male and 14 female). The inertial measurement units were placed on the subject’s ankle, chest,
and wrist to collect 3-axis acceleration data.
For DSADS dataset, we used all subjects’ data. For PAMAP2, we removed 6 activities (i.e., Watching TV,

Computer work, Car driving, Folding laundry, House Cleaning, and Playing soccer), as they were only performed
by one subject, which was also removed in our study. For MHEALTH dataset, we used all subjects’ data. For the
GOTOV dataset, since there are some missing channels in the sensors attached to ankle/chest, only wrist-worn
accelerometer data (i.e., with 3 dimensions) were used in our study. Details of these used datasets can be found in
Table 1.
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Fig. 3. Activity distribution of the four datasets in our study (best viewed in colour)
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Figure 3 presents the activity distribution for the four datasets. In terms of activity classes, DSADS dataset is
more balanced than the other three. Since the unbalanced class distribution might affect the performance of the
algorithms, we further report the class-wise performance.

5.2 Experimental Settings
Data Pre-processing. In our study, we divided the raw sensory data streams into small data segments with a

fixed-sized sliding window (168 samples) with an overlap of 50%. Since the sampling rates for the four datasets
are different, it yields window lengths of 1.68, 3.36, 6.72, 2.02 seconds for the PAMAP2, MHEALTH, DSADS,
and GOTOV datasets, respectively. These windows/segments can be fed into the network directly without any
hand-crafted feature engineering or transformation.

Baseline Models. We compared our proposed BPD framework with the closely related baselines. CNN[56]
and DeepConvLSTM[37] were the state-of-the-art feature learning approaches for human activity recognition;
beta-VAE[17] was a conventional disentangle learning framework in the computer vision field and GILE [46] was
a recent method aiming at disentangling the identity information from raw data streams, yet subject identity
label is required by GILE as an extra information. For all baseline methods, we used the released code if available,
and reproduced the unavailable methods using Pytorch[41].

Training Setting. Our network parameters were initialised by Xavier Normal [10] and optimised by Adam
Optimiser [24] with a learning rate of 0.0001 for four datasets. Due to the computational limitation, we set
the training batch size to 64 with 300 maximum training epoch. For the latent representation dimension (i.e.,
feature dimension of activity code z𝑠𝑖𝑔/redundant code z𝑟𝑒𝑑 ), we empirically set 592 to encoder CNN and 32 to
DeepConvLSTM respectively. All algorithms were implemented by Pytorch and running on NVIDIA RTX 3090
GPU.

Evaluation Protocol. Initially, we used the Leave-One-Subject-Out Cross Validation (LOSO-CV) strategy for each
dataset to evaluate the models’ performance. For each dataset, both the overall performance and the subject-level
performance were reported. Moreover, we conducted the ablation study on the large GOTOV dataset (35 subjects
in total) using the hold-out validation, where the training set included 28 subjects while the test set included the
other 7 subjects.

Evaluation Metric. To measure the performance of our proposed BPD framework, we used the mean F1 score
as the evaluation metric, which is widely used in the human activity recognition literature [13, 37]. Moreover,
we also reported the class-wise F1-score for the four datasets to investigate the effect of redundant information
on the class level (i.e., to see which class benefits more when removing the irrelevant information) for a better
understanding of our BPD framework.

5.3 Result on Four public HAR Datasets
We evaluated our BPD framework on the four public HAR datasets. In Table 2, 3, 4, the mean F1-scores of the
baseline models as well as our BPD framework (based on two encoders, i.e., CNN and DeepConvLSTM) were
reported in both subject-level and overall average for datasets PAMAP2, MHEALTH, and DSADS. We can see the
superior performance improvements in all settings brought by the proposed BPD framework, irrespective of the
encoders. We also compared two disentanglement learning baselines, namely, beta-VAE[17] and GILE [46]. From
these tables, we can see both methods yield lower performance even than the baselines without disentanglement.
Since beta-VAE was an approach borrowed from the computer vision field, it may not generalise well to HAR tasks.
On the other hand, the low performance of the GILE might be due to the enforcement of mapping features into
subject-identifiable-level which may be unnecessary and hard to train. We grid-searched the hyper-parameters
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Table 2. Mean F1-score for each subject on the PAMAP2 dataset (in leave-one-subject-out CV setting)

Dataset Subject CNN DeepConvLSTM beta-VAE GILE BPD
(CNN)

BPD
(DeepConvLSTM)

PAMAP2

1 0.6539 0.6340 0.5970 0.6032 0.6826 0.6915
2 0.7563 0.7363 0.7084 0.7181 0.8719 0.8381
3 0.8099 0.7154 0.5713 0.6950 0.8262 0.8117
4 0.8044 0.8183 0.7115 0.7542 0.8307 0.8244
5 0.8886 0.8588 0.7391 0.8181 0.8900 0.8675
6 0.8791 0.7924 0.7175 0.7723 0.8827 0.8281
7 0.9243 0.9100 0.8376 0.8932 0.9311 0.9101
8 0.3952 0.4495 0.3814 0.3521 0.4011 0.4921

Avg. 0.7640 0.7393 0.6580 0.7008 0.7895 0.7829

Table 3. Mean F1-score for each subject on the Mhealth dataset (in leave-one-subject-out CV setting)

Dataset Subject CNN DeepConvLSTM beta-VAE GILE BPD
(CNN)

BPD
(DeepConvLSTM)

MHEALTH

1 0.9514 0.9074 0.7866 0.8452 0.9575 0.9554
2 0.8530 0.8760 0.8195 0.8135 0.9348 0.9085
3 0.8441 0.8688 0.7091 0.8322 0.8659 0.8711
4 0.9351 0.9112 0.8101 0.8810 0.9510 0.9573
5 0.8781 0.8583 0.7752 0.8150 0.9904 0.9804
6 0.9849 0.9241 0.8753 0.8832 0.9934 0.9766
7 0.9793 0.9735 0.6985 0.8923 0.9965 0.9760
8 0.9685 0.9566 0.8706 0.8842 0.9848 0.9775
9 0.9894 0.9812 0.9113 0.9237 0.9913 0.9869
10 0.9829 0.9383 0.8737 0.9224 0.9943 0.9865

Avg. 0.9367 0.9195 0.8130 0.8693 0.9660 0.9576

of GILE for the best results, yet the results were less promising when compared with our approach. Moreover,
GILE requires human identity labels, which can be less flexible than ours.
In Table 2, we also noticed the low results from subject 8. Although the BPD scheme can refine the activity

feature and improve the results substantially (about 2 − 4%), they are still far from satisfactory. One major
reason can be the limited number of subjects for training. In the LOSO-CV setting, only 7 subjects were used
for training, and the trained model may not generalise well to unseen subjects that are very different from the
(small) population.

On the MHEALTH and DSADS datasets, although with different activity types, from Table 3, and Table 4, we
can see more significant results: 1) BPD can boost the performance much further, irrespective of the encoder. 2)
when compared with other disentanglement learning baselines (beta-VAE, GILE), our BPD yields much higher
results.
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Table 4. Mean F1-score for each subject on the DSADS dataset (in leave-one-subject-out CV setting)

Dataset Subject CNN DeepConvLSTM beta-VAE GILE BPD
(CNN)

BPD
(DeepConvLSTM)

DSADS

1 0.7354 0.7316 0.6135 0.7467 0.7599 0.7267
2 0.7661 0.7804 0.6545 0.7746 0.8919 0.8850
3 0.7468 0.8327 0.5858 0.7305 0.8755 0.8947
4 0.6734 0.6551 0.5012 0.6579 0.6626 0.6756
5 0.6472 0.6504 0.4915 0.7228 0.7894 0.7661
6 0.8023 0.9027 0.5225 0.8185 0.9551 0.9302
7 0.7242 0.7341 0.5724 0.6363 0.8615 0.8537
8 0.6139 0.6255 0.5584 0.5875 0.7498 0.7247

Avg. 0.7136 0.7390 0.5625 0.7094 0.8182 0.8070

Compared with PAMAP2, MHEALTH, and DSADS datasets, GOTOV is a much larger dataset with 35 subjects,
based on which we conducted LOSO-CV and reported the corresponding results in Table 5 on appendix A. We can
observe that the results can benefit from our BPD scheme, with more significant improvement on the CNN encoder
than the DeepConvLSTM encoder. Specifically, as shown in Table 5, BPD(CNN) and BPD(DeepConvLSTM) can
yield about 3.08%, and 2% performance gain (in terms of overall average), respectively.

5.4 Class-wise Analysis
Previous experimental results present the performance in both overall and subject-level. To get more insight into
our BPD scheme, it is also crucial to show the class-wise or activity-wise results to see how BPD can disentangle
redundancy from different activities.
We conducted the experiments using CNN and BPD(CNN) on the four datasets, and reported the class-wise

results in Figure 4. We can see the general performance gains (by using BPD), yet they vary at the activity level. For
the PAMAP2 dataset, substantial improvements are from the following activities: “Vacuum cleaning”, “Standing”,
“Cycling”, “Ascending stairs”. It is quite interesting to see that in the MHEALTH, DSADS and GOTOV datasets
(Figure 4b,4c, 4d), the “Ascending stairs” activity (or analogously, “Climbing Stairs” on MHEALTH dataset and
“Walking Stairs Up” on GOTOV dataset) were also the activities that benefit significantly from the BPD scheme,
indicating these activities may be easily affected by personal/environmental factors. Similarly, some strenuous
activities such as “Cycling”, ‘Vacuum cleaning” , “Knees bending”, “Exercising”, and “ Rowing” are more likely to
be affected by physical factors such as vital capacity so that might cause large variance for different subjects.
On the contrary, the activities with less energy consumption (e.g., “Lying” activities) will benefit less from the
BPD framework since the patterns for those activities tend to be less personal. It is interesting to see that the
“Standing” activity on PAMAP2, and “Sitting” activity on MHEALTH and DSADS dataset gain large improvement.
A possible explanation for that is these activities may be affected by the personal habit (i.e., sitting/standing
posture).

5.5 Ablation Study
To study the effectiveness of the major components in the BPD framework, we conducted ablation studies. Due
to the computational limitation, we used the GOTOV dataset with a hold out setting. The training group contains
28 subjects (17 males and 11 females) while the testing group contains 7 subjects (4 males and 3 females).
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Fig. 4. Class-wise F1-score of CNN with and w/o the proposed BPD scheme on the four datasets

With encoders (CNN[56] and DeepConvLSTM[37]), we studied the baseline (i.e., w/o BPD), the signal &
redundancy disentanglement component (i.e., BPD w/o dependency reduction), and the proposed full BPD.
In addition, we also studied the contribution of reconstructor (which can keep the integrity of the feature
representation) by removing it from BPD (i.e., BPD w/o reconstructor).
Figure 5 reports the detailed results of the ablation studies, and we can see that each component in the BPD

framework contributes positively to the final results, and the encoder CNN benefits more from the BPD framework
than DeepConvLSTM. For encoder CNN, the application of the signal & redundancy disentanglement component
(i.e., BPD w/o dependency reduction) can achieve about 3% performance improvement, in contrast to only 1%
for DeepConvLSTM. For both encoders, performing the dependency reduction mechanism can further push
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Fig. 5. Mean F1-score of the ablation study on GOTOV datasets

signal & redundancy features apart, with further performance gains (i.e., BPD in Fig. 5 ). We can also observe
that for both encoders, the performance of the BPD drop substantially (about 2% in mean F1 score) without using
reconstructor (i.e., BPD w/o reconstructor in Fig.5), indicating the importance of keeping the integrity of the
feature representation.

5.6 Disentanglement Analysis
To further verify the effectiveness of our BPD framework–(whether the intra-class variability is reduced), we
applied t-SNE to generate visualisation on latent features for GOTOV dataset.
Figure 6 illustrates the t-SNE plot for the original CNN feature (Figure 6a), activity feature (Figure 6b) and

redundant features (Figure 6c). We can witness that the clusters of activity embeddings of BPD (i.e., Figure 6b)
are more distinct and organised than those of CNN and redundant features (i.e., Figure 6a and 6c), and samples
with the same activity class tend to group into the same cluster, i.e., smaller intra-class variability. For example,
“Dish washing”, “Vacuum Cleaning”, “Stacking Shelves” and “Step” seems more distinguishable in activity feature
space than the other two. However, we also noticed that the redundant feature still contain some substantial
activity patterns, which should be removed. One possible conjecture can be the limitation of this GOTOV dataset.
Although it is a large dataset with 35 subjects, the population are older people (e.g., with age ranging from 61-73).
The lack of diversity makes it challenging to remove the redundancy caused by personal factors completely.

5.7 Discussion and Limitation
The proposed BPD framework aims to remove redundant features that do not contribute to the classifica-
tion/recognition (in the training set), in order to reduce the intra-class variability for improved performance.
For HAR scenarios, these redundant features correspond to the coupled effect of various covariate factors, e.g.,
the coupled effect of age, gender, weight, etc. and we expect performance gain by disentangling and removing
these redundancies. However, current HAR datasets are normally limited due to population diversity, making it
challenging to remove all the factors completely, and in Figure 6c, we can still observe the activity patterns in the
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redundant features, suggesting the activity signals and the redundancy were not completely separated in the
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feature space. Nevertheless, our BPD framework can still reduce the effect of covariate factors, as suggested by
the substantial performance gains on the 4 public datasets.
Although our framework can reduce the effect of covariate factors with improved performance,it remains

unclear what these factors are. With additional metadata, a recent work GILE [46] attempted to disentangle human
identity from activity signal, and this motivates us to explore further the attribute-oriented disentanglement
frameworks. Although it may require additional meta-information for the disentanglement (between the attribute
and the activity), it may provide a solution with higher interpretability.
Another major challenge is the cross-dataset evaluation. Different datasets may be affected by more chal-

lenging external factors such as unpredictable wearing locations or unknown hardware settings. For example,
accelerometer devices from various manufacturers may have different xyz orientations. Although our BPD can be
used to reduce the intra-class variability to some extent at the person level, it is hard to generalise to unknown
hardware setups. Some wearing location protocol or device calibration should be applied for the cross-dataset
evaluation, which will be explored in the future.

6 CONCLUSION
The main focus of this work is developing a feature disentanglement method that can effectively disentangle the
redundant information from the initial signal to reduce the intra-class variability and improve the performance
of HAR models. Such a method could become a prerequisite for wider adoption of HAR models/algorithms
in real-world applications. In this case, we proposed the Behaviour Pattern Disentanglement(BPD) scheme
for sensor-based human activity recognition. Specifically, we first design a novel signal&redundant feature
disentanglement module that leverages the concept of adversary training to separate the activity feature and
redundant feature from the initial representation. Then, we present a signal&redundant feature dependency
reduction module to reduce the correlation between two disentangled features so to improve the disentanglement.
Finally, we present an adversarial training algorithm to ensure the proposed BPD framework can be trained
properly. To evaluate the HAR models more thoroughly, we conducted extensive experiments on four public
datasets. Experimental results suggested it can further improve the performance of existing DL approaches (e.g.,
CNN or DeepConvLSTM), making it a flexible solution for the HAR research community.
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Table 5. Mean F1-score for each subject on the GOTOV dataset (in leave-one-subject-out CV setting)

Dataset Subject CNN DeepConvLSTM beta-VAE GILE BPD
(CNN)

BPD
(DeepConvLSTM)

1 0.6852 0.7156 0.6200 0.6401 0.7541 0.7493
2 0.7585 0.7241 0.7064 0.7120 0.7730 0.7287
3 0.6770 0.6432 0.6221 0.6373 0.7357 0.6469
4 0.7480 0.6993 0.5751 0.6931 0.7497 0.7263
5 0.8295 0.8157 0.6757 0.7832 0.8378 0.8271
6 0.6608 0.6569 0.5572 0.6212 0.6742 0.6670
7 0.6581 0.7125 0.5845 0.6101 0.7194 0.7391
8 0.7843 0.8176 0.6750 0.7532 0.8118 0.8378
9 0.8945 0.8997 0.7365 0.8106 0.8968 0.9018
10 0.6584 0.6527 0.5780 0.5701 0.6621 0.6537
11 0.7950 0.7915 0.6649 0.7432 0.7984 0.8164
12 0.6802 0.6816 0.5479 0.6330 0.7458 0.6894
13 0.7515 0.6415 0.5382 0.6179 0.7880 0.6725
14 0.5257 0.5047 0.3700 0.3841 0.6243 0.5231
15 0.7852 0.7746 0.6751 0.7597 0.7946 0.7961
16 0.5837 0.5936 0.5311 0.5332 0.6537 0.6210
17 0.6124 0.6055 0.5328 0.5421 0.6476 0.6319
18 0.5664 0.5102 0.4213 0.4979 0.5709 0.5305
19 0.6900 0.6533 0.6192 0.6127 0.7530 0.6825
20 0.8163 0.8190 0.7243 0.7904 0.8725 0.8219
21 0.7902 0.7756 0.5745 0.6920 0.8037 0.7869
22 0.4930 0.4564 0.3693 0.3988 0.5122 0.4826
23 0.5523 0.5647 0.5030 0.4988 0.5540 0.5841
24 0.6332 0.6250 0.6078 0.6320 0.6643 0.6374
25 0.5303 0.4571 0.3908 0.4450 0.5340 0.4842
26 0.4463 0.4204 0.3347 0.4102 0.4813 0.4455
27 0.8107 0.7798 0.7157 0.7322 0.8261 0.7910
28 0.6305 0.6046 0.5876 0.5886 0.6529 0.6377
29 0.4893 0.4578 0.3921 0.4172 0.4951 0.4692
30 0.6301 0.6405 0.5354 0.6078 0.6799 0.6840
31 0.5527 0.5454 0.4941 0.5132 0.5929 0.5595
32 0.7328 0.7065 0.6184 0.6932 0.7620 0.7388
33 0.6779 0.6427 0.5948 0.6321 0.6986 0.6505
34 0.6307 0.6169 0.5212 0.6039 0.6490 0.6453
35 0.4982 0.5163 0.3670 0.4821 0.5670 0.5639

GOTOV

Avg. 0.6645 0.6492 0.5589 0.6083 0.6953 0.6692
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